VIP: A Visual Editor and Compiler for
V-PROMELA *

Moataz Kamel! and Stefan Leue?

! Department of Electrical and Computer Engineering
University of Waterloo
Waterloo, Ontario N2L 3G1, Canada
m2kamelQuwaterloo.ca
http://fee.uwaterloo.ca/ m2kamel
% Tnstitut fir Informatik
Albert-Ludwigs-Universitdt Freiburg
D-79110 Freiburg, Germany
http://www.informatik.uni-freiburg.de/"leue
leue@informatik.uni-freiburg.de

Abstract. We describe the Visual Interface to PROMELA (VIP) tool
that we have recently implemented. VIP supports the visual editing and
maintenance of v-Promela models. v-Promela is a visual, object-oriented
extension to PROMELA, the input language to the SPIN model checker.
We introduce the v-Promela notation as supported by the VIP editor,
discuss PROMELA code generation, and describe the process of property
validation for the resulting models. Our discussion centers around two
case studies, a call processing system and the CORBA GIOP protocol.

1 Introduction

As Davis argues in [2], a significant return of investment can be expected when
investing resources into the early stages of the software design cycle: in particular,
fixing design flaws at the requirements stage can be 200 times less expensive
than fixing them at the maintenance stage. Even corrections at the architectural
design stage can be 50 times more cost efficient than at the maintenance stage.
The inherent complexity of concurrent real-time systems makes it necessary
to employ mechanized, formally supported methods to analyze early life-cycle
artifacts. In this context the main questions to be answered are whether the
requirements are consistent and correct with the intended behavior of the system,
and whether the system’s design correctly implements the requirements.

It has been shown that state-based modeling and automatic model checking
is an effective tool for answering these questions for concurrent reactive systems.
Recent advances in model checking research have made verification based on

* The work documented in this paper was largely performed while the second author
was with the University of Waterloo. We are currently working on a public release
version of the VIP tool, interested parties are requested to contact the authors.

state space exploration more feasible for realistic software problems [6,7]. How-
ever, the introduction of formal methods in the software engineering process is
often hampered by textual interfaces laden with mathematical notations. Visual
formalisms, on the other hand, appear to enjoy broad acceptance in engineering
practice.

With the ever increasing complexity of concurrent, reactive systems that con-
tinue to be designed, the requirements and high-level design models are becom-
ing sizeable artifacts themselves. In order to facilitate the model development,
process, we propose the alignment of the modeling language of a state-of-the
art formal analysis tool with the state of the art visual, object-oriented hierar-
chical notations used in current software development. This has the benefit of
fostering maintainability and evolvability of these models while increasing the
chances that the models actually express the intentions of the designers and in-
creasing the acceptance of formal analysis in the practical software engineering
community.

In this paper we present the prototype of a graphical user interface-based
tool called the Visual Interface for Promela (VIP) that we have developed. VIP
supports a visual language called v-Promela which is the graphical extension
of PROMELA, the input language for the model checker SPIN [8]. The tool pro-
vides graphical editing capabilities for v-Promela models and generates standard
PROMELA code from the graphical representation. In the process of describing
VIP we also show how modeling of complex real-time systems for the purpose of
formal analysis can be based on a state-of-the art visual object-oriented notation,
and that efficient tool support can be provided.

Related Work. VIP supports visual modeling using v-Promela. The v-Promela
notation has first been described in [13] and [5]. The design of v-Promela was
guided by a number of desiderata. First, we desired to use PROMELA/SPIN val-
idation technology without any changes to the existing model checker. Hence
every feature of v-Promela had to be compilable into Promela. Next, we were in-
terested in a visual notation that would capture both structural and behavioral
modeling aspects. We were also interested in providing hierarchical modeling
and object-oriented concepts. Finally, we have attempted to comply as far as
possible with existing or emerging software design methodology standards for
concurrent real-time systems. As a consequence, the v-Promela notation inher-
ited largely from the UML-RT notation [16]. UML-RT, which evolved from the
ROOM notation [15], is supported by an industrial-strength case tool (ROSE-
RT) and is expected to be a prominent player in the real-time systems domain
in coming years. Some of the syntactic as well as some of the semantic aspects
of UML-RT are not completely specified at this time. The authors of UML-RT
suggest that these missing aspects can be derived from the definitions of the
syntax and semantics of ROOM as given in [15]. The development of the VIP
tool is described in more detail in [10] which also discusses some modifications
of the original v-Promela proposal.

Organization of the Paper. In Section 2 we describe the architecture of the VIP
tool, and we illustrate the use of VIP in Section 3 through an example. In Section
4 we discuss the v-Promela compiler implemented in VIP. In Section 5 we show
how to perform property validation in the context of our approach. Finally, in
Section 6 we discuss further issues related to the implementation of VIP, and we
conclude in Section 7.

2 VIP Architecture

To support the editing and maintenance of v-Promela models we have developed
the VIP (Visual Interface to Promela) tool. Figure 1 illustrates the functional
architecture of VIP. We will describe the functionality of the VIP editor in the
following section. The edited v-Promela models are compiled into Promela code
by VIP, and the resulting Promela models can be validated by the SPIN model
checker. SPIN error traces can then be re-interpreted in the context of the original
v-Promela model. Currently, the re-interpretation has to be done manually. To
store v-Promela models, we currently use JAVA class serialization. The use of
this feature of the JAVA Development Toolkit saved considerable development,
time, however, to allow better future expandability we are currently working
on implementing storage and retrieval functionality based on XML [17] schema
definitions and an XML parser.

D existing

results, trails

serialized

schema

Fig. 1. VIP tool architecture.

Fig. 2. POTS Model editor.

3 Modeling in VIP

In this Section we describe the main features of the VIP graphical user interface.
As a running example we use a simplified Plain Old Telephony System (POTS)
call processing problem. The example consists of two User processes and two

PhoneHandler processes contained in the environment of the POTS system.

The User processes represent the behavior of the telephones which communicate
with PhoneHandler processes which represent the call processing software inside
the switch. The PhoneHandler processes are responsible for responding to events
from the User processes as well as communicating with other PhoneHandlers in
order to establish a voice connection.

3.1 Structural Modeling

Model Editor. The Model Editor is the starting point for creating v-Promela
models. It allows the user to define the basic elements of a v-Promela model:
capsule classes, protocol classes, and data classes. From the model editor the
user can open editors for each one of the above mentioned basic elements. From
the model editor, the user can also save the model or generate Promela code.
Figure 2 illustrates the model editor for the POTS example. It specifies three
capsule classes, three protocol classes, and a data class.

T r— o) | | ST [
o n

8 s 8 0] it e

IS AT LD
S LR

=

:I'J < e g STIT I
"ﬂ_'_ 'I ‘r:l'-ln-.-q...—w. egelTed g} I:::I.:”'r*_"" :
Fig. 3. PhoneHandler cap- il i 1]"

sule structure.
Fig. 4. Structure of POTS system.

Structure Editor The Structure Editor displays the internal structure of a chosen
capsule class using the v-Promela graphical notation. The structure may consist
of other capsule instances, buffers, synchronizers, ports, and connectors. Changes
to the structure of the capsule class are automatically reflected in other views
that contain an instance of the capsule class.

Figure 4 represents the POTS system structure. Concurrent objects are called
capsules in accordance with the UML-RT terminology. The POTS system con-
sists of a high-level capsule class called POTS. It is decomposed into four contained

! In order to obtain models that can be translated into Promela all v-Promela models
must be closed systems. Therefore, the environment behavior must be modeled as
part of the system.

capsules as indicated by the capsule references in Figure 4. None of the contained
capsule classes is further refined. However, Figure 3 illustrates the internal struc-
ture definition of the PhoneHandler capsule class. The black and white boxes
at the border of the capsule denote in and outbound ports, respectively. Ports
represent message passing interfaces for capsules. In contrast to v-Promela where
ports are either uni- or bi-directional, all ports in VIP are uni-directional. Incor-
porating bi-directional ports into VIP is part of future improvements which are
in-progress. The type of a port is a protocol class, see below for a discussion of
their definition. Ports need to be connected to ports in other capsule instances
to enable messages to be exchanged. Connectors, as indicated by the labeled ar-
rows in Figure 4, are used to establish connections between ports. The connector
label shows the name of the connector and the message buffering capacity of the
connector within brackets. Only ports of identical type can be connected, and a
connector must join an out-port to an in-port.

A capsule instance can have an associated replication factor that is greater
or equal to 1. The replication factor specifies the number of capsule instances
that will be generated at instantiation time. For simplicity of presentation all
capsule instances in the POTS example have a replication factor of 1.

EEETTT |

o R R

L EEE LY

e

o v

BALEEE S

A 2 L]

- whe s (AT | o |

Cwesd | ol |

Fig. 5. Protocol class definition for POTS model.

Protocol Classes. A Protocol class consists of a name and a list of message
classes. Each message class has a name which identifies the message type and an
associated message body type. Figure 5 illustrates the protocol class definition
for the POTS example. The names of the protocol classes as well as the message
class names are indicative of signals passed in a telephone switch.

Data Classes. Figure 6 illustrates the definition of data classes in VIP based
on the available Promela data types. If a data class is mapped onto a basic
Promela data type it merely serves as an alias for that type. However, a data
class definition can also take advantage of the typedef construct in Promela.
Figure 6 shows the definition of the data class subscriber number as a record
consisting of a short integer field area_code and an integer field phone number.
Compared to the data type capabilities of languages like UML-RT the v-Promela
possibilities are rather limited. However, this restriction is necessary to allow

W v e e
vt Trem U T T
famm . I-T—m

| da fiam = T

k. il SiA——

e | iage

=] =] e | o |

oo []

Fig. 6. Dataclass definition and usage in protocol class definitions.

exhaustive model-checking by SPIN. The right side of Figure 6 shows how a
data class definition is used to define a message body type. The dialdigit
message of the UserToSwitch protocol is defined to have a message body type
of subscriber number.

oy T T R e

W [_remiEn
liaw (4wl N e |'

oo EREESRCRSERY |
LN S

Fig. 7. Data object definition. Fig. 8. Defining ports based
on protocol class definitions.

Data Objects. Data objects are instances of data classes that can be used in
expressions. They are defined as attributes of capsule classes. Figure 7 illustrates
the definition of a data object ph_number within the User capsule class as an
instance of the subscriber number data class. A data object may also be defined
to be an array.

Buffers and Synchronizers. UML-RT is very rigid in the way that it allows inter-
process communication to happen. Communication between processes takes place
exclusively through point-to-point message exchanges via ports. In contrast,
Promela allows arbitrary sets of processes to share channels or to synchro-
nize via rendez-vous channels. In order to permit the more general modeling
approach that Promela makes possible, v-Promela introduces the concepts of
buffers and synchronizers. These concepts have been used in the CORBA GIOP

example that is described in Section 5 and we have used them to model producer-
consumer problems as well as semaphores.

3.2 Behavior Modeling

Behavior in v-Promela is modeled using hierarchical, communicating extended
finite state machines.

Hierarchical State-Machines. The behavior editor in VIP allows for editing the
state machine associated with a capsule class. In the POTS example, only the
User and PhoneHandler capsules have state machines associated with them, as
illustrated in Figures 9 and 10. The top-level state of any state machine has the
name TOP. To illustrate the hierarchical nature of state machines in VIP, the
refinement of the await_digit state of Figure 9 is shown in Figure 10. It should
be noted that in the current implementation of VIP we consider two states with
identical name labels to denote different states. We use various icons inside the
state symbols to express attributes of the states. As an example, the circle in the
lower left corner of the idle state in Figure 9 indicates that this state has been
marked as a valid end state, and the icons in the await_digit state indicate
that this state has a refinement and that entry code has been defined for it.

Circled X and E symbols indicate exit and entry points for multi-level tran-
sitions, respectively. Typical for the use of hierarchical state machines is the
occurrence of chained and group transitions. For instance, if the PhoneHandler
capsule is in any state contained within the await_digit state this state may
be exited if the transition labeled onhook_ in its super state executes. v-Promela
and VIP allow for explicit return or return to history semantics for hierarchical
state machines. If an entry point is not connected to a contained state, the re-
turn to history semantics will be chosen in the event of an incoming transition.
Otherwise, the explicit return to a contained state is indicated by an arrow from
the entry point to the contained target state.

L]

state.
Fig. 9. PhoneHandler TOP state.

X
{ : I .r
Lt Fig.10. PhoneHandler TOP:await_digit

Transition code. The labels on the state transitions in the previous state tran-
sition diagrams have no executable semantics, they are merely used to identify
the transition and to enhance readability of the state machine model. To attach
enabling conditions and executable code to a state machine transition we open
the transition’s property editor, as shown in Figures 11 and 12. There are two
formats for specifying transition code. Figure 11 shows the UML style of defin-
ing transition code. The code consists first of an event specification which in our
implementation consists of the reception of a message from a port. In the editor
we use pull-down menus that allow the user first to select a port from which the
message is to be received, and second to select a message type from the list of
all messages that are allowable for the selected port. A guard can be specified
as a side-effect free Promela expression. The chosen semantics is that only if
the specified message is receivable and the guard is true will the transition be
taken. The action can be an arbitrary Promela code fragment and will typically
contain a send statement for a message. Care has to be taken that the code
specified here is always executable and does not contain internal control flow
loops. The current version of VIP does not parse the action code and hence it
is the responsibility of the modeler to ensure that the code is meaningful. The
second format, illustrated in Figure 12 shows the more liberal way of defining a
transition. Unlike UML-RT, v-Promela transitions can be triggered by the exe-
cutability of any Promela statement, in this case a boolean expression specified
in the event clause. If the event clause evaluates to true then the action part
will be executed. In this example a message of type busytone is sent to the port
toUser.

As illustrated in Figure 13, state entry and exit code will be executed when-
ever a state is entered or exited, respectively. In our example this means that
from whichever state we enter the await digit state we will apply a dialtone
signal to the user. This has bearing on the format in which transition code is
specified. It could be argued that transition code could be specified by simply al-
lowing an arbitrary Promela statement to be attached to a transition. However,
exit code should be executed prior to executing the transition code, which would
be impossible if we were not distinguishing a triggering event in the transition
code.

4 The VIP Compiler

The basic principles of the Promela code generation are that capsules are mapped
onto proctypes, protocols onto mtype declarations, and that ports with their
connectors as well as buffers and synchronizers are mapped onto channel dec-
larations. Message bodies are implemented as record structures (typedefs in
Promela parlance) with one field for every message type that the protocol com-
prises. Data objects are mapped onto PROMELA variables. For a more extensive
discussion we refer to [14, 5, 10].

Ports. Ports form part of the interface to capsule classes. Accordingly, the
VIP compiler generates ports as channel type parameters in the parameter

B rave OETENNE
[F r—:-n|
I_,F_u-'\- RITE Pl . s [l (= 5

| .
| P - e b
| rmal

- : A N

Fig. 12. Free-form transition definition.

Fig. 11. Promela code in action portion of
transition definition. Fig. 13. Entry code definition.

list of the corresponding capsule class proctype. On instantiation of a proc-
type, the VIP compiler generates the proper arguments to bind the correct con-
nectors to the ports. For instance, in the POTS example the POTS proctype
contains a channel declaration of the form chan toUser2105717128 = [1] of
SwitchToUser 2. The definition of the User proctype declares two ports (from-
Switch and toSwitch): proctype User(chan fromSwitch, toSwitch). In the
body of the POTS proctype, the User proctype is instantiated and its ports
are bound by the code run User(toUser2105717128, fromUser2016588168
). This scheme has the desirable property that ports can be referenced within
the proctype without regard for which channel may be connected to it.

State Machine Encoding. The v-Promela control states could be implemented
in two ways: a) by using Promela variables, or b) by using Promela control state
labels and goto statements. Measurements documented in [10] suggest that,
while the state vector size for both variants is identical, the state space size
for variant a) is about twice the size for variant b). We therefore implemented
variant b) in VIP. The state name label is chosen such that it starts with the state
name in the v-Promela model and the VIP compiler adds a numeric sequence to
disambiguate states with identical v-Promela names.

Transition Code. The code generated for transitions specified in the UML style
starts with checking whether the specified message reception event is available
by polling the relevant channel. The result is conjoined with the evaluation of
the guard which yields the transition’s enabling condition. The firing of the
transition will cause the sequential execution of the following code fragments:

2 The VIP compiler disambiguates element names by concatenating a unique identifier
to the name.

first the message reception is performed, next the exit code of the current state,
then the action code associated with the transition, followed by entry code for
the new state and finally the goto into the successor control state. Promela does
not allow polling the state of synchronous rendez-vous channels. Therefore, in
such cases the first part of the transition code consists only of the rendez-vous
communication, and any specified guard will be ignored. Figure 14 illustrates
this mechanism for the offhook transition from the idle state of Figure 9.
To enhance comprehensibility of the code, the compiler automatically inserts
meaningful comments even if no entry or exit code has been specified. Note that
the transition modeled here is a chained multi-level transition from the idle
state into the wait sub-state contained in the await digit state (c.f. Figure
10), and that the entry code defined for await_digit, i.e., toUser!dialtone is
executed during this transition.

if
/* correct_connectreq_audiblering */
:: received_ph_num.phone_number ==
/* exit digit_received */
/* action
correct_connectreq_audiblering */
toOtherHandler!connectreq;
toUser'!audiblering;
/* exit await_digit */
/* action connectreq */
/* entry originator */
/* action untitled */
/* entry party_ringing */
goto party_ringing1956295048

if
id1e1723158139:
:: fromUser?[offhook] && true ->
fromUser?UserToSwitch_msg;
/* exit idle */
/% action offhook_ */
/* entry await_digit */
toUser!dialtone;
/* entry wait */
goto wait2091208315

fi

Fig. 14. Transiti de for UML-style.
'8 anstton code fot shyie Fig.15. Transition code for free-form

chained transition

Figure 15 illustrates the generated code for the VIP free form format for
transition code specification. In this case the enabling condition is specified by
an equality test on the value of a variable. The example also illustrates a chained
transition, i.e., one that crosses nesting levels in the hierarchical state machine.
All relevant entry and exit code specified along the transition chain is inlined
into the transition code which, in certain cases, allows it to be processed as one
atomic action?.

Priority Schemes for Group Transitions. The implementation of group transi-
tions depends on the priority model the user wishes to adopt. Three possible
transition priority schemes are possible. In the first scheme, higher-level (group)

% Promela allows non-blocking statements to be grouped into an atomic clause which
can improve model checking efficiency.

ringing62399654:

{if

:: fromUser?[offhook]

fi } unless {

if

:: fromUser?[onhook]...

:: fromOtherHandler?[disconnect]
fi}

Fig. 16. Priority on group transition

ringing62399654:
{if
:: fromUser?[onhook]
: fromOtherHandler?[disconnect]
fi } unless {
if
:: fromUser?[offhook]
fi}

Fig. 17. Priority on local transition

ringing2063158907:
if

: fromUser?[offhook]

: fromUser? [onhook]

: fromOtherHandler?[disconnect]
fi

Fig. 18. Transition code with equal priority

transitions could take priority over lower-level transitions. Alternatively, lower-
level transitions could take priority over higher-level transitions. Finally, both
high and low-level transitions can be given equal priority. In VIP, all three prior-
ity schemes have implemented with the user having control over which scheme is
used. Equal priority is the default in VIP. It is implemented simply by combining
both high-level and low-level transition code as separate conditions in the same
if ... fi statement as illustrated in Figure 18. Promela semantics dictate that
multiple enabled conditions in an if statement are chosen non-deterministically
resulting in equal priority among alternatives. The other two priority schemes are
implemented using the Promela {A}unless{B} construct which pre-empts state-
ments in A if the statement in B becomes executable. The first priority scheme
is implemented by placing high-level transition code in B and low-level code in
A. The second scheme implements the reverse. Figures 16 and 17 illustrate both
of these schemes. Note that only the non-pre-emptive scheme complies with the
run-to-completion semantics of UML-RT as described in [15].

5 Property Validation

Property validation of VIP-synthesized models currently relies on using the
SPIN model checker to analyze the generated Promela models. The interpreta-
tion of the validation results that SPIN produces in the context of the v-Promela
model currently relies on manual interpretation. We discuss two validation case
studies using VIP-generated Promela code.

Validation of POTS. The previously presented POTS model was designed with
the intention of revealing most of the significant features of v-Promela as sup-
ported by VIP. As a consequence, little attention was paid to developing a flaw-
less model of POTS. The described POTS model is not free of deadlock. We
have labeled the idle state in the PhoneHandler process and the on_hook state
in the User process as end-states and an end-state check in SPIN easily shows
a trace that terminates with one process an invalid end-state. This is mainly
due to the fact that we have not synchronized the User and PhoneHandler in-
teractions. Thus, the User can repeatedly generate offhook and onhook event
sequences that will eventually fill up the channel to the PhoneHandler. Also,
call processing software is rarely “live”, i.e., it only satisfies trivial liveness prop-
erties. A progress test in SPIN easily shows offhook and onhook cycles that do
not imply system progress.

We therefore decided to answer the question of whether our POTS model
was at all capable of doing it’s very raison d’étre, namely to connect two phones.
In order to show that such a scenario exists, we formulate the converse property
(namely, that the scenario does not exist) and hope that SPIN would refute the
claim by showing us a trail to the contrary. The property we seek to prove is:
“there exists a scenario in which both PhoneHandler processes are in the respec-
tive conversation states.” The converse of the property is: “it is never the case
that, at the same time, one PhoneHandler process reaches the conversation state
for an originator and the other reaches the conversation state for a terminator.”
This property is represented by the LTL formula: '<>(p && q) where p and ¢
are defined in SPIN by the state propositions:

#define p (PhoneHandler[2]@conversation_origl1985130888)

#define q (PhoneHandler[3]@conversation_term2034323067)

These expressions are referred to as remote references in Promela parlance. The
expression PhoneHandler [2] @conversation orig1985130888 is a boolean ex-
pression that evaluates to true if the process named PhoneHandler with process
id equal to 2 is at the control state labeled conversation orig1985130888.

Shortly after running the model checker on the above claim, an error trace
was found. As expected, the error trace that SPIN found showed a scenario in
which both Phone Handler processes were in the respective conversation states.
The validation required matching appr. 448,000 states, 680,000 transitions and
45.5 MByte of memory.

Validation of CORBA GIOP. In a previous work we modeled and formally
validated the Common Object Request Broker Architecture (CORBA) Gen-
eral Inter-ORB Protocol (GIOP) [4] using PROMELA/SPIN validation technol-
ogy [11]. In that work, a hand-built model of GIOP was developed and validated
in Promela. Subsequently, a v-Promela model of GIOP was created using the
VIP tool. The v-Promela model of GIOP has the equivalent functionality of
the scaled-down, hand-built model that was validated in [11]. It comprises two
User, two Server, one GIOPClient and two GIOPAgent processes. The model
structure is shown in Figure 19. Behavior of the various capsules is defined using
non-hierarchical v-Promela state machines.

Fig. 19. Structure of the v-Promela GIOP model.

Certain limitations of the VIP tool caused difficulty in expressing the struc-
ture of the model in a natural way. For example, replication of capsule instances
was not implemented in the tool at the time the experiments were run and
therefore, multiple instances of capsules had to be explicitly shown in the model.
Similarly, replicated ports and channels were also not available in the tool and
thus, buffers were used to emulate the desired communication structure.

In the v-Promela model of GIOP, messages destined to the GIOPClient from
either of the User processes are merged into a single buffer called toClientU.
Similarly, messages destined for the GIOPClient from either of the GIOPAgent
processes are merged into a buffer called toClientL. In the opposite direction,
the GIOPClient may send messages to the User or GIOPAgent by placing them in
the toUser and toAgentL buffers respectively. The messages are tagged with the
Promela process id (pid) of the receiving process which only receives messages
that contain its pid as a tag.

Model Property|State vector|Depth|States |Transitions|Memory usage
hand-built|safety |244 byte 119 |77,261 (92,566 17.697 Mb

VIP safety |256 byte 171 |8,704 13,236 4.590 Mb
hand-built |progress |248 byte 229 |237,157|534,157 49.032 Mb
VIP progress |260 byte 223 |13,641 (36,376 5.819 Mb

Table 1. Verification of safety and progress properties of hand-built versus automati-
cally generated code.

A basic safety properties verification run was carried out on the two models.
This checked for invalid end-states and assertion violations. Equivalent assertions
were placed in both models to check for invalid conditions such as reception of
a Reply when no Request was outstanding. Also, end-state labels were placed
in both models to identify valid end-states in each process. To validate progress
properties a progress label was inserted into the models where the User process
reaches the UReplyRecvd state. Both models ran with no violations on the safety
as well as the progress properties. The results are shown in Table 1. As can be
seen, the VIP generated code, although it required a larger state vector, resulted
in a significantly smaller state space. This can be attributed to two factors.
First, the state encoding of the VIP generated model uses goto statements while
the hand-built model uses an event loop construct in which control states were
represented through variables. It was shown in [10] that this difference alone
can account for a doubling in state space size. Second, the hand-built model
uses global variables for all channels whereas, the VIP generated code declares
channels as being local variables of the Env process. In [10] it was also shown
that the use of global variables can reduce the effectiveness of the partial order
reduction algorithm and thus also contributes to a larger state space.

To model the occurrence of events in the state-based model checker SPIN we
used the previously described concept of remote referencing. For example, the
remote reference:

#define p (GIOPAgent[5]@SRequestSent)
refers to a label SRequestSent introduced into the action part of the transition
code within a state-machine in the GIOPAgent capsule. It corresponds to the
state after the SRequest message has been sent.

For the hand-built GIOP model, ten high-level requirements (HLR) were
formulated and verified in [11]. Of the ten requirements, two were explicitly
checked on the VIP generated code for the GIOP model. Some other require-
ments were checked implicitly through the use of assertions. All requirements
that were checked were exhaustively verified successfully on the VIP generated
model. This serves to confirm that the required behaviors present in the hand-
built model are also present in the VIP model and that the VIP-generated code
does not cause a prohibitive state space size penalty.

6 VIP Implementation

VIP was implemented in the Java programming language using Sun Microsys-
tem’s freely available Java Development Toolkit version 1.2. This allowed us
to achieve a highly portable tool while leveraging Java’s extensive GUI sup-
port. In developing VIP we adhered to a strict model-view separation which
has enhanced flexibility and reuse in the design. To achieve maintainability, a
quintessential requirement in the academic environment in which VIP was built,
all class structures have been documented in UML. The graphical editors used
in VIP are based on a separately developed component called Nexus. Other

components such as windows and dialog boxes are based on standard Java class
libraries.

As discussed in [10], VIP contains a set of approximately 30 well-formedness
rules, the majority of which are checked whenever a model component is changed
as a result of changes in the view. An example rule is that “.. a connector can
only connect Ports that are protocol compatible...”

7 Conclusions

We introduced the VIP tool which permits the creation and editing of v-Promela
models as well as the compilation of these models into Promela code. We showed
that the resulting models are analyzable using standard SPIN model checking
technology.

The current version of VIP supports many features of v-Promela. A major
thrust in research and development effort will be needed to develop VIP into
a comprehensive CASE tool for requirements and high-level design. First, the
aspect of property specification is currently not supported very strongly. We
hope that an incorporation of ideas stemming from the temporal logic specifi-
cation pattern approach [3] and from graphical interval logics [12] will facilitate
the specification of requirements. We will also design ways of relieving the user
from having to build hooks inside the synthesized Promela code, for example
by introducing labels, by allowing property formulae to refer to states and vari-
ables in the v-Promela model. Next, we plan to feed the SPIN validation results
back into the VIP environment including an animation of simulation and error
traces inside VIP*. We also intend to explore linking the v-Promela models to
other model checking tools by suitable intermediate representations as for in-
stance the IF representation [1]. The question of the different priority schemes
for implementing transition code has highlighted the need for parametric seman-
tics in order to remain compatible with other modeling tools and methods. We
plan, in particular, to develop a set of semantic options that will allow analyzing
models which have semantics identical to UML-RT. Finally, some concepts from
v-Promela such as structural and behavioral inheritance as well as data object
scoping have not yet been implemented and we plan to add these as well.

We hope that by reconciling an industrial standard visual modeling language
like UML-RT with the input language of a model checker, and by providing
suitable tool support we can contribute to increasing the acceptance of formal
methods in the practical software engineering community.

Acknowledgements. The Nexus component that VIP uses was jointly developed
with Christopher Trudeau.

References

1. M. Bozga, L. Ghirvu, S. Graf, L. Mounier, and J. Sifakis. The Intermediate Rep-
resentation IF: Syntax and semantics. Technical report, Vérimag, Grenoble, 1999.

* The feasibility of this has been demonstrated quite convincingly in [9]

10.

11.

12.

13.

14.

15.

16.

17.

A. M. Davis. Software Requirements: Objects, Functions and States. Prentice Hall,
Upper Saddle River, New Jersey, USA, 1993.

Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Property Specifi-
cation Patterns for Finite State Verification. In Proceedings of the 2nd Workshop
on Formal Methods in Software Practice, March 1998. For access to the patterns
catalog see URL http://www.cis.ksu.edu/"dwyer/spec-patterns.html.

. Object Management Group. The Common Object Request Broker: Architecture

and Specification. Revision 2.1, August 1997.

G. J. Holzmann and S. Leue. Towards v-Promala, a visual, object-oriented interface
for Xspin. Unpublished manuscript, 1998.

G. J. Holzmann and Margaret H. Smith. A practical method for the verification
of event-driven software. In Proc. ICSE99, pages 597607, Los Angeles, CA, USA,
May 1999. invited.

G. J. Holzmann and Margaret H. Smith. Software model checking. In Proc.
FORTE/PSTV 1999, pages 597-607, Beijing, China, October 1999. Kluwer. in-
vited.

G.J. Holzmann. The model checker Spin. IEEE Trans. on Software Engineering,
23(5):279-295, May 1997. Special issue on Formal Methods in Software Practice.
W. Janssen, R. Mateescu, S Mauw, P. Fennema, and P. van der Stappen. Model
checking for managers. In Theoretical and Practical Aspects of SPIN Model Check-
ing, Proceedings of the 5th and 6th International SPIN Workshops, volume 1680
of Lecture Notes in Computer Science, pages 92-107. Springer Verlag, September
1999.

M. Kamel. On the visual modeling and verification of concurrent sys-
tems. Master’s thesis, University of Waterloo, 1999. Available from URL
http://fee.uwaterloo.ca/ “m2kamel/research/thesis.ps.

M. Kamel and S. Leue. Formalization and Validation of the General Inter-ORB
Protocol (GIOP) using Promela and Spin. Software Tools for Technology Transfer,
1999. To appear.

G. Kutty, Y. S. Ramakrishna, L. E. Moser, L. K. Dillon, and P. M. Melliar-Smith.
A graphical interval logic toolset for verifying concurrent systems. In C. Courcou-
betis, editor, Computer Aided Verification, 5th International Conference, CAV’93,
volume 697 of Lecture Notes in Computer Science, pages 138-153. Springer Verlag,
1993.

S. Leue and G. Holzmann. v-Promela: A Visual, Object-Oriented Language for
SPIN. In Proceedings of the 2nd IEEE Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC’99), Saint Malo, France, pages 14 — 23. IEEE Com-
puter Society Press, May 1999.

S. Leue and G. Holzmann. v-Promela: A Visual, Object-Oriented Language for
SPIN. In Proceedings of the 2nd IEEE Symposium on Object-Oriented Real-Time
Distributed Computing ISORC’99, pages 14-23. IEEE Computer Society, May
1999.

B. Selic, G. Gullekson, and P.T. Ward. Real-Time Object-Oriented Modelling. John
Wiley & Sons, Inc., 1994.

B. Selic and J. Rumbaugh. Using UML for modeling complex real-time systems.
http://www.objectime.com, March 1998.

W3C. Extensible Markup Language (XML) - W3C Recommendation.
http://www.w3.org/TR/REC-xml, February 1998.

