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Motivation

♦ Software Ubiquity
8software is a determining, if not the most determining, technology 

used in most technical systems used or developed

"Our civilization runs on software"

Bjarne Stroustrup

♦ Software Complexity of Reactive, Embedded Systems
8ever growing complexity of services provided

– bugs as ubiquitous as these systems are becoming
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Motivation

♦ Economical impact ...
8software failures cost huge amounts of money

– according to NIST study (2002), software failures in the US cost 
about $59.5 billion annually (0.6% of US GDP)

– esitmate that $22.2 billion could be saved by improved software 
quality assurance (including testing)

Quoted from Software disasters are often people problems, 
http://www.msnbc.msn.com/id/6174622/

♦ ... but it's also an ehtics issue
8 threat to human well-being and life

– baby killed by front-seat airbag, even though airbag had been 
software disabled 

– re-use of a bit in the assembler code suspected as cause
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Motivation
♦ Faults are often due to unexpected interleavings
8AT&T Telephone Switch Failure, January 15, 1990

– failure: new software release in 4ESS switches
ia switch would no longer send messages to indicate it is no 

longer faulty, but other switches would notice this due to 
resumed activity
ione switch signaled it went down, went through recovery 

cycle (reboot), and resumed sending traffic
isecond switch accepted down message and attempted to 

reset
idue to software fault, when second switch received second 

message from first switch, it could not properly handle it and 
went itself through recovery / resume cycle
ifault propagated through 114 different switches in AT&T 

network (all ran the same software!)
– result: 9 hr. nationwide telephone traffic blockade

Source: Peter G. Neumann, Computer Related Risks, ACM Press, 1995, p. 14-15
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Motivation

♦ Model Checking
8automated, systematic state space exploration

8provides error traces

8a complementing technique

– code reviews / inspections find most obvious faults

– testing finds hidden, but unanticipated faults

– model checking aims at unanticipated faults
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Model Checking
♦ What is Model Checking?
8basic principle

– given
i(software-) model M
iproperty specification S

– does M satisfy S?

M |= S
ithat is the case if every behaviour of M is also a behaviour of 

S
ii.e., the model M does not reveal behaviour violating the 

specification S

M S
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Model Checking
♦ Explicit State Model Checking

– state space given by explicit state-transition function
– successful in the verification of concurrent, asynchronous 

software systems
iautomatic, terminating procedure if M finite
ierror explanation by output of offending execution paths

* "error trails"
* "counterexamples"

ipartial order reduction, bit-state hashing to counter state 
space explosion

– one prominent example
iSPIN (G. Holzmann, formerly Bell Labs, now JPL)

* ACM Software Systems Award 
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Model Checking of Safety Properties
♦ Classical Use: Verification
8safety: invariants, absence of deadlock, reachability of states,...
8DFS in the system's global state space

– if no property violating state found
itermination after complete state space exploration

– if property violating state found
ioutput counterexample

* search stack contains path from initial system state into 
property violating state ∈ M \ S
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Model Checking of Safety Properties
♦ More Recently: Use of Model Checker for Debugging 

Purposes
8 let p an undesired state (safety) property

8claim �¬p
– model checker will try to disprove this claim and find a trail into a 

state satisfying the undesired property
8error explanation

∈ M \ S
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Model Checking of Safety Properties
♦ Example: Debugging of POTS

con con

con con

A B

PhA PhB

Invariant Property

¬(A@con ∧ ¬PhA@con ∧ B@con ∧ PhB@con)
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Counterexamples 

… 440 messages …

SPIN

total of 16 messages

manual



15 © Stefan Leue 2004

Counterexample with Depth-First Search (DFS)

♦ Shorter Counterexamples
8shorter path to the same property-violating state
8shorter path to some property-violating state

♦ State Space Exploration Strategies?
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Uninformed Search

Graphiken von A. Lluch-Lafuente

Depth-First Search (DFS) Breadth-First Search (BFS)

8 memory efficient

8 potentially long error trails
8 stack-based

8 memory inefficient

8 shortest error trails
8 no stack
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Informed Search

Best-First Search (BF)

8 informed search
8heuristic estimate h(S): estimate of 

length of path to goal state S
8 no guarantee for optimally short trails 

(sub-optimal solution)
8 complete algorithm
8goal state, if present, will be found

8 often improved error trails

Graphiken von A. Lluch-Lafuente
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Informed Search
A*

8 re-opening of nodes
8move states from Closed to 

Open if they can be 
reached on a shorter path
8re-open v

7

3

3

1

6

u

v

8 informed search
8 optimally short error trails if h is 

a lower bound (admissible 
heuristics)

8 complete

8 no stack

Graphiken von A. Lluch-Lafuente
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Informed Search
Iterative Deepening A* (IDA*)

8 informed search
8 iterate search depth according to increasing total cost bounds
8 complete and optimal (simulates A*)

8 stack-based DF search
8bitstate hashing can be applied
8avoid re-opening since generating path length 

information may be false due to duplicates
8no problem for monotone heuristic estimates

cost = U'  

cost = U
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Directed Explicit-State Model Checking
♦ Statespace Exploration
8goal: locating errors

– short error trails for easy error interpretation 
8exploration / search algorithms

– BF
– A*
iA* does not maintain search stack

* book-keeping to preserve predecessor information
– IDA*

♦ Tool 
8 implemented in HSF-SPIN (Lluch-Lafuente / Edelkamp, Freiburg)

– based on SPIN version 3.4
– handles a large fragment of Promela
– http://www.informatik.uni-freiburg.de/~lafuente/hsf-spin/
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Heuristic Estimator Functions
♦ Formula based Heuristic Hf
8 let f a state formula, S a global system state

– Hf is a formula interpreted over S yielding a (lower bound) 
estimate for number of steps necessary to reach state satisfying f 
from S

8 for queue expressions and relational operators:
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Heuristic Estimator Functions
♦ Formula based Heuristic Hf
8 for predicates over control state locations

– example for f: PhA@con
iprocess i in control state s

– lower bound for number of global state transitions is number of 
local state transitions

– compute all-pairs-shortest path for local state transition matrix Di
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Heuristic Estimator Functions
♦ Formula based Heuristic Hf
8 for boolean expressions 
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Heuristic Estimator Functions

♦ Absence of Deadlock
8active processes heuristic: Hap(S)

– computes the number of currently active (=non-blocked) 
processes

– relatively small range of heuristic function

8HU

– based on user characterization of control states as "dangerous"

– can be highly informative
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Heuristic Estimator Functions

♦ Assertions 
8 transition (u, assert(a), v) in process i

– f = i@u ∧ ¬a

– apply Hf

♦ Partially or Completely Known State Vectors
8 trail-guided model checking

– characterize target state by given error trail

iis there a shorter trail to same (or equivalent) state

– directed search based on Hamming-distance heuristics

inot always admissible but yields good results

* admissible if each transition changes at most one bit in 
the state vector
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HSF-SPIN Experiments
♦ Invariant Violation (Hf)

states
exp.states
transitions
err. length

12 messages
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HSF-SPIN Experiments
♦ Deadlock Detection with Hap

states
exp.states
transitions
err. lenght
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HSF-SPIN Experiments
♦ Dining Philosophers
8 finding of errors where DFS

fails
– BFS up to p = 8, 
– DFS (SPIN) up to p = 15

– for A*: p ≥ 255 (linear 
behavior dependent on p)

8SPIN: DFS following lexical 
ordering of processes

8A*: directed search avoids 
pitfalls of lexically ordered 
exploration
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HSF-SPIN Experiments
♦ IDA* and Double-Bitstate Hashing
8deadlock detection in GIOP
8memory bound: 256 MB, time limit 120 mins
8 IDA* and double bit-state hashing

– number of expansions

exceeds
time limit

exceeds
memory

limit
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HSF-SPIN Experiments
♦ Trail Improvement with Hamming (He

d) and FSM (He
m) 

Distance Metrics
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Directed Model Checking - Liveness
♦ Liveness Properties
8satisfied along a path of infinite length

8 ”every sending is followed by a reception“ (response)

– �(send ⇒ ◊receive)

icontains liveness component

8amounts to recognizing ω-regular expressions of the form uvω

– => cycle detection
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Directed Model Checking - Liveness
♦ Automata-based Model Checking for Liveness

Properties
8does model M satisfy the specification S 

M |= S
8M satisfies S iff

L(M) ⊆ L(S)  ⇔ L(M) ∩ (L(S) = ∅

8automata based emptyness test for L(M) ∩ L(S) after Vardi and 
Wolper

– detecting cycles in the synchronous product of M und S

L(M) L(S)
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Directed Model Checking - Liveness
♦ Automata-based Model Checking (after Vardi/Wolper)
8synchronous product construction

at_i
x1

¬at_i
x2

¬at_i
x3

M �◊ at_i

◊�¬ at_i

true
¬ at_i

¬ at_iy1 y2

Negation

S

(x1, y1) (x2, y1) (x1, y2)

(x3, y1) (x3, y2)

P
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Directed Model Checking - Liveness
♦ Exploration Algorithm
8nested DFS (NDFS)

8note: second traversal in post-order
– memory efficiency
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Directed Model Checking for Liveness

♦ Potential of Improving Nested DFS
8 improvement of second search (cycle finding) by directed search

– not promising, since often only one cycle closing state on stack

8alternative: pre-order traversal

– quadratic time and linear memory overhead

8 improved nested DFS (I-NDFS)

– results not as promising as for safety properties
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Trail Improvement for Liveness
♦ Trail Improvement
8given error trail

– determine some state s starting a cycle

– determine cycle of transitions α1 .. αn leading from s to s
8 improvement

– path from root to s (or an equivalent s')

– shorter cycle β1 .. βm equivalent to α1 .. αn
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Trail Improvement für Liveness

♦ Trail Improvement
8 m: Hamming distance

8 d: FSM distance 
8 [s]: states equivalent to s

♦ philo
8 the existing cycle can be

improved

♦ GIOP
8 search for equivalent state

s' pays off
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Partial Order Reduction
♦ Partial Order Reduction 
8exploit commutativity of concurrent transitions

– exploration of only one representative of a class of equivalent 
paths in the state space

8pre-processing: computing the "ample set" for a state 
– subset of the set of enabled transitions in a state that must be fully 

expanded
8 loss of solution length optimality 
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DMC and Partial Order Reduction

♦ Conditions C0-C3 for the Construction of an Ample Set 
for Safety Protperties

8conditions C0-C2 are independent of the used search algorithm
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DMC and Partial Order Reduction

♦ Conditions C0-C3 for the Construction of an Ample Set 
for Safety Protperties

8C3 can be over-approximated as C3cycle:

Every cycle in the reduced state space contains at least one state 
that is fully expanded.

– expensive, since it requires cycle detection

8C3 further over-approximated for safety properties as C3stack (for 
instance in SPIN):

If a state s is not fully expanded, then at least one transition in 
ample(s) does not lead to a state that is on the search stack

– problem:

ionly applicable to stack-based DFS search

iA* does not use a search stack
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DMC and Partial Order Reduction
♦ Overapproximations of C3 for non-DFS Algorithms
8C3duplicate

– if a state is not entirely expanded then at least one transition in 
ample(s) does not lead into a previously visited state
iwill not necessarily close a cycle

8C3static

– if a state is not fully expanded, then there is no transition in
ample(s) which closes a cycle in the control flow of a local 
process
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Experiments with HSF-SPIN
♦ Safety Property Violation
8with po-reduction, with heuristic A* search

8 further experiments with DMC + PO
– no negative mutual influence 
– occasional synergetic effects were observed
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Trail Reordering using PO Techniques
♦ Trail Reordering
8 loss of solution quality when process can immediately perform

transition into error state but search algorithm postpones taking that
transition

8post-processing of error trail
– ignore those transitions in the error trail that are independent from

transition leading directly into error state
ido not disable each other, are commutative

– conditions to ignore irrelevant transition α
iα is invisible wrt the property to be analyzed
iα is independent from any later occurring transition
iα cannot enable any later occurring transition

– eliminate irrelevant transitions successively starting at the end of 
the trail
ipreviously relevant transitions may become irrelevant, for

instance, if they were only dependent on an eliminated
transition
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Trail Reordering using PO Techniques
♦ Experimental Results

8error states after reordering are very similar, differ only in transitions
relevant to other processes than those which define the property (two
processes assuming to be the leader)
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DMC and Probabilistic Model Checking

Set of "Goal" States
• satisfying reachability condition
• jointly contributing to required
probability measure
CSL Model Checking
• establishes reachability and satisfaction
of probability measure
• no counterexample
Directed Model Checking on LTS
• short, partial counterexample

• large amount of probability mass
• efficient search in large state spaces
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DMC and Abstraction Refinement

Finite Abstraction Construction

Further Issues
• alternative abstractions
• unified view / abstract interpretation

Abstractions for Concurrent Timed Systems

.. τ τ

τ

τ τ

τ
→ →

concurrent TA (inf. state) timed LTS (inf. state) abstract LTS (finite state)

τ
τ

τ

τ

τ

τ

τ
τ

Counterexample Generation

• model checking procedure on abstract LTS
•dealing with refinement predicates

• incorporate directed model checking
• short counterexamples for few refinement
predicates
• efficient traversal of abstract LTS

• heuristics
• structural information conc. TA / timed LTS
• abstraction predicates

• efficient heuristic search algorithms

abstract LTS 
(refined)

DXMC
(heuristic search)

p1

p2

spuriousness test
τ

τ

τ

τ

τ

τ

τ
τ

p1

p2
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Guided Search in FLAVERS

♦ Structural Heuristics
8e.g., in Java PathFinder (NASA Ames)

– maximize number of thread switches to detect concurrency
related bugs more easily

♦ FLAVERS (UMass Amherst)
8 finite-state verification based on data-flow abstracted model of 

Ada/Java programs
– heuristics: minimal distance in task automaton to reach an 

accepting (= property violating state) [FSE 2004]
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Conclusion
♦ Directed Model Checking with A* and BF Searches for 

Safety Properties
8BF for fast error finding, A* for later improvement
8shorter counterexamples than with DFS, often optimal
8often less exploration effort than with BFS
8even crude heuristic estimates improve error trail length
8 for dining philosophers, DMC with A* permits the solution of problems 

for which DFS fails

♦ Liveness Properties
8certain improvements through A*+INDFS
8good results with trail improvement based on Hamming and FSM

distance metrics

♦ Partial Order Reduction and DMC
8approximations C3static and C3duplicate

8occasional loss of optimality 
8good overall co-existence
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HSF-SPIN Experiments
♦ Impact of Range of Heuristic Functions
8deadlock detection, # of expanded states



57 © Stefan Leue 2004

Depth-Bounded DFS
♦ Finding Shortest Error Paths
8continue to explore when property-violating state found

– bound search depth to shallowest error found
8anomaly in depth-bounded search

– the fact that V has already been visited at higher depth means 
that the shallower V will not be re-explored, i.e., error not found

– solution:  enforce re-exploring of states reached along another, 
shorter path (-DREACH in SPIN)

iworst-case exponential time penalty
Graphiken von A. Lluch-Lafuente
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Informed Search
♦ Monotonicity of Heuristics
8monotonicity

– for each state u and each successor v of u:

h(u) - h(v) ≤ cost(u → v)
8 impact

– non-monotone heuristics may lead to exponential blow-up of 
reopenings in A*

– in practice: reopening rarely observed for non-monotone 
heuristics
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IDA* for Safety Properties
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Complexity Issues
♦ Model Checking
8Translation LTL -> Büchi automata: exponential in the length of the 

formula
8DFS: O(n+e)

♦ A*
8maintaining the nodes 

– open_list: priority queue
ias heap: O((n+e) log n)
ias Fibonacci-heaps: O(e + n log n) 

8additional effort for the state exploration (current research)
– h admissible, h not monotone: exploration of exponentially many 

nodes 
– h inadmissible (no search for an optimal solution): avoidance of

re-opening 
iHap: monotone, admissible
iHD without rendez-vous: monotone, admissible
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