
Directed Explicit-State Model Checking

Stefan Leue

University of Konstanz
Chair for Software Engineering

Stefan.Leue@uni-konstanz.de
http://www.inf.uni-konstanz.de/~soft

1 November 2004

Copyright © Stefan Leue 2004

2 © Stefan Leue 2004

♦ joint work with
8Stefan Edelkamp

– Dortmund

8Alberto Lluch-Lafuente

– Pisa

3 © Stefan Leue 2004

Overview

1. Introduction

2. State Space Exploration Strategies

3. Directed Explicit-State Model Checking for Safety Properties

4. Directed Explicit-State Model Checking for Liveness Properties

5. Directed Explicit-State Model Checking and Partial-Order Reduction

6. Current and Future Research

7. Conclusion

4 © Stefan Leue 2004

Overview

1. Introduction

2. State Space Exploration Strategies

3. Directed Explicit-State Model Checking for Safety Properties

4. Directed Explicit-State Model Checking for Liveness Properties

5. Directed Explicit-State Model Checking and Partial-Order Reduction

6. Current and Future Research

7. Conclusion

5 © Stefan Leue 2004

Motivation

♦ Software Ubiquity
8software is a determining, if not the most determining, technology

used in most technical systems used or developed

"Our civilization runs on software"

Bjarne Stroustrup

♦ Software Complexity of Reactive, Embedded Systems
8ever growing complexity of services provided

– bugs as ubiquitous as these systems are becoming

6 © Stefan Leue 2004

Motivation

♦ Economical impact ...
8software failures cost huge amounts of money

– according to NIST study (2002), software failures in the US cost
about $59.5 billion annually (0.6% of US GDP)

– esitmate that $22.2 billion could be saved by improved software
quality assurance (including testing)

Quoted from Software disasters are often people problems,
http://www.msnbc.msn.com/id/6174622/

♦ ... but it's also an ehtics issue
8 threat to human well-being and life

– baby killed by front-seat airbag, even though airbag had been
software disabled

– re-use of a bit in the assembler code suspected as cause

7 © Stefan Leue 2004

Motivation
♦ Faults are often due to unexpected interleavings
8AT&T Telephone Switch Failure, January 15, 1990

– failure: new software release in 4ESS switches
ia switch would no longer send messages to indicate it is no

longer faulty, but other switches would notice this due to
resumed activity
ione switch signaled it went down, went through recovery

cycle (reboot), and resumed sending traffic
isecond switch accepted down message and attempted to

reset
idue to software fault, when second switch received second

message from first switch, it could not properly handle it and
went itself through recovery / resume cycle
ifault propagated through 114 different switches in AT&T

network (all ran the same software!)
– result: 9 hr. nationwide telephone traffic blockade

Source: Peter G. Neumann, Computer Related Risks, ACM Press, 1995, p. 14-15

8 © Stefan Leue 2004

Motivation

♦ Model Checking
8automated, systematic state space exploration

8provides error traces

8a complementing technique

– code reviews / inspections find most obvious faults

– testing finds hidden, but unanticipated faults

– model checking aims at unanticipated faults

9 © Stefan Leue 2004

Model Checking
♦ What is Model Checking?
8basic principle

– given
i(software-) model M
iproperty specification S

– does M satisfy S?

M |= S
ithat is the case if every behaviour of M is also a behaviour of

S
ii.e., the model M does not reveal behaviour violating the

specification S

M S

10 © Stefan Leue 2004

Model Checking
♦ Explicit State Model Checking

– state space given by explicit state-transition function
– successful in the verification of concurrent, asynchronous

software systems
iautomatic, terminating procedure if M finite
ierror explanation by output of offending execution paths

* "error trails"
* "counterexamples"

ipartial order reduction, bit-state hashing to counter state
space explosion

– one prominent example
iSPIN (G. Holzmann, formerly Bell Labs, now JPL)

* ACM Software Systems Award

11 © Stefan Leue 2004

Model Checking of Safety Properties
♦ Classical Use: Verification
8safety: invariants, absence of deadlock, reachability of states,...
8DFS in the system's global state space

– if no property violating state found
itermination after complete state space exploration

– if property violating state found
ioutput counterexample

* search stack contains path from initial system state into
property violating state ∈ M \ S

12 © Stefan Leue 2004

Model Checking of Safety Properties
♦ More Recently: Use of Model Checker for Debugging

Purposes
8 let p an undesired state (safety) property

8claim �¬p
– model checker will try to disprove this claim and find a trail into a

state satisfying the undesired property
8error explanation

∈ M \ S

13 © Stefan Leue 2004

Model Checking of Safety Properties
♦ Example: Debugging of POTS

con con

con con

A B

PhA PhB

Invariant Property

¬(A@con ∧ ¬PhA@con ∧ B@con ∧ PhB@con)

14 © Stefan Leue 2004

Counterexamples

… 440 messages …

SPIN

total of 16 messages

manual

15 © Stefan Leue 2004

Counterexample with Depth-First Search (DFS)

♦ Shorter Counterexamples
8shorter path to the same property-violating state
8shorter path to some property-violating state

♦ State Space Exploration Strategies?

16 © Stefan Leue 2004

Overview

1. Introduction

2. State Space Exploration Strategies

3. Directed Explicit-State Model Checking for Safety Properties

4. Directed Explicit-State Model Checking for Liveness Properties

5. Directed Explicit-State Model Checking and Partial-Order Reduction

6. Current and Future Research

7. Conclusion

17 © Stefan Leue 2004

Uninformed Search

Graphiken von A. Lluch-Lafuente

Depth-First Search (DFS) Breadth-First Search (BFS)

8 memory efficient

8 potentially long error trails
8 stack-based

8 memory inefficient

8 shortest error trails
8 no stack

18 © Stefan Leue 2004

Informed Search

Best-First Search (BF)

8 informed search
8heuristic estimate h(S): estimate of

length of path to goal state S
8 no guarantee for optimally short trails

(sub-optimal solution)
8 complete algorithm
8goal state, if present, will be found

8 often improved error trails

Graphiken von A. Lluch-Lafuente

19 © Stefan Leue 2004

Informed Search
A*

8 re-opening of nodes
8move states from Closed to

Open if they can be
reached on a shorter path
8re-open v

7

3

3

1

6

u

v

8 informed search
8 optimally short error trails if h is

a lower bound (admissible
heuristics)

8 complete

8 no stack

Graphiken von A. Lluch-Lafuente

20 © Stefan Leue 2004

Informed Search
Iterative Deepening A* (IDA*)

8 informed search
8 iterate search depth according to increasing total cost bounds
8 complete and optimal (simulates A*)

8 stack-based DF search
8bitstate hashing can be applied
8avoid re-opening since generating path length

information may be false due to duplicates
8no problem for monotone heuristic estimates

cost = U'

cost = U

21 © Stefan Leue 2004

Overview

1. Introduction

2. State Space Exploration Strategies

3. Directed Explicit-State Model Checking for Safety Properties

4. Directed Explicit-State Model Checking for Liveness Properties

5. Directed Explicit-State Model Checking and Partial-Order Reduction

6. Current and Future Research

7. Conclusion

22 © Stefan Leue 2004

Directed Explicit-State Model Checking
♦ Statespace Exploration
8goal: locating errors

– short error trails for easy error interpretation
8exploration / search algorithms

– BF
– A*
iA* does not maintain search stack

* book-keeping to preserve predecessor information
– IDA*

♦ Tool
8 implemented in HSF-SPIN (Lluch-Lafuente / Edelkamp, Freiburg)

– based on SPIN version 3.4
– handles a large fragment of Promela
– http://www.informatik.uni-freiburg.de/~lafuente/hsf-spin/

23 © Stefan Leue 2004

Heuristic Estimator Functions
♦ Formula based Heuristic Hf
8 let f a state formula, S a global system state

– Hf is a formula interpreted over S yielding a (lower bound)
estimate for number of steps necessary to reach state satisfying f
from S

8 for queue expressions and relational operators:

24 © Stefan Leue 2004

Heuristic Estimator Functions
♦ Formula based Heuristic Hf
8 for predicates over control state locations

– example for f: PhA@con
iprocess i in control state s

– lower bound for number of global state transitions is number of
local state transitions

– compute all-pairs-shortest path for local state transition matrix Di

25 © Stefan Leue 2004

Heuristic Estimator Functions
♦ Formula based Heuristic Hf
8 for boolean expressions

26 © Stefan Leue 2004

Heuristic Estimator Functions

♦ Absence of Deadlock
8active processes heuristic: Hap(S)

– computes the number of currently active (=non-blocked)
processes

– relatively small range of heuristic function

8HU

– based on user characterization of control states as "dangerous"

– can be highly informative

27 © Stefan Leue 2004

Heuristic Estimator Functions

♦ Assertions
8 transition (u, assert(a), v) in process i

– f = i@u ∧ ¬a

– apply Hf

♦ Partially or Completely Known State Vectors
8 trail-guided model checking

– characterize target state by given error trail

iis there a shorter trail to same (or equivalent) state

– directed search based on Hamming-distance heuristics

inot always admissible but yields good results

* admissible if each transition changes at most one bit in
the state vector

28 © Stefan Leue 2004

HSF-SPIN Experiments
♦ Invariant Violation (Hf)

states
exp.states
transitions
err. length

12 messages

29 © Stefan Leue 2004

HSF-SPIN Experiments
♦ Deadlock Detection with Hap

states
exp.states
transitions
err. lenght

30 © Stefan Leue 2004

HSF-SPIN Experiments
♦ Dining Philosophers
8 finding of errors where DFS

fails
– BFS up to p = 8,
– DFS (SPIN) up to p = 15

– for A*: p ≥ 255 (linear
behavior dependent on p)

8SPIN: DFS following lexical
ordering of processes

8A*: directed search avoids
pitfalls of lexically ordered
exploration

31 © Stefan Leue 2004

HSF-SPIN Experiments
♦ IDA* and Double-Bitstate Hashing
8deadlock detection in GIOP
8memory bound: 256 MB, time limit 120 mins
8 IDA* and double bit-state hashing

– number of expansions

exceeds
time limit

exceeds
memory

limit

32 © Stefan Leue 2004

HSF-SPIN Experiments
♦ Trail Improvement with Hamming (He

d) and FSM (He
m)

Distance Metrics

33 © Stefan Leue 2004

Overview

1. Introduction

2. State Space Exploration Strategies

3. Directed Explicit-State Model Checking for Safety Properties

4. Directed Explicit-State Model Checking for Liveness Properties

5. Directed Explicit-State Model Checking and Partial-Order Reduction

6. Current and Future Research

7. Conclusion

34 © Stefan Leue 2004

Directed Model Checking - Liveness
♦ Liveness Properties
8satisfied along a path of infinite length

8 ”every sending is followed by a reception“ (response)

– �(send ⇒ ◊receive)

icontains liveness component

8amounts to recognizing ω-regular expressions of the form uvω

– => cycle detection

35 © Stefan Leue 2004

Directed Model Checking - Liveness
♦ Automata-based Model Checking for Liveness

Properties
8does model M satisfy the specification S

M |= S
8M satisfies S iff

L(M) ⊆ L(S) ⇔ L(M) ∩ (L(S) = ∅

8automata based emptyness test for L(M) ∩ L(S) after Vardi and
Wolper

– detecting cycles in the synchronous product of M und S

L(M) L(S)

36 © Stefan Leue 2004

Directed Model Checking - Liveness
♦ Automata-based Model Checking (after Vardi/Wolper)
8synchronous product construction

at_i
x1

¬at_i
x2

¬at_i
x3

M �◊ at_i

◊�¬ at_i

true
¬ at_i

¬ at_iy1 y2

Negation

S

(x1, y1) (x2, y1) (x1, y2)

(x3, y1) (x3, y2)

P

37 © Stefan Leue 2004

Directed Model Checking - Liveness
♦ Exploration Algorithm
8nested DFS (NDFS)

8note: second traversal in post-order
– memory efficiency

38 © Stefan Leue 2004

Directed Model Checking for Liveness

♦ Potential of Improving Nested DFS
8 improvement of second search (cycle finding) by directed search

– not promising, since often only one cycle closing state on stack

8alternative: pre-order traversal

– quadratic time and linear memory overhead

8 improved nested DFS (I-NDFS)

– results not as promising as for safety properties

39 © Stefan Leue 2004

Trail Improvement for Liveness
♦ Trail Improvement
8given error trail

– determine some state s starting a cycle

– determine cycle of transitions α1 .. αn leading from s to s
8 improvement

– path from root to s (or an equivalent s')

– shorter cycle β1 .. βm equivalent to α1 .. αn

40 © Stefan Leue 2004

Trail Improvement für Liveness

♦ Trail Improvement
8 m: Hamming distance

8 d: FSM distance
8 [s]: states equivalent to s

♦ philo
8 the existing cycle can be

improved

♦ GIOP
8 search for equivalent state

s' pays off

41 © Stefan Leue 2004

Overview

1. Introduction

2. State Space Exploration Strategies

3. Directed Explicit-State Model Checking for Safety Properties

4. Directed Explicit-State Model Checking for Liveness Properties

5. Directed Explicit-State Model Checking and Partial-Order Reduction

6. Current and Future Research

7. Conclusion

42 © Stefan Leue 2004

Partial Order Reduction
♦ Partial Order Reduction
8exploit commutativity of concurrent transitions

– exploration of only one representative of a class of equivalent
paths in the state space

8pre-processing: computing the "ample set" for a state
– subset of the set of enabled transitions in a state that must be fully

expanded
8 loss of solution length optimality

43 © Stefan Leue 2004

DMC and Partial Order Reduction

♦ Conditions C0-C3 for the Construction of an Ample Set
for Safety Protperties

8conditions C0-C2 are independent of the used search algorithm

44 © Stefan Leue 2004

DMC and Partial Order Reduction

♦ Conditions C0-C3 for the Construction of an Ample Set
for Safety Protperties

8C3 can be over-approximated as C3cycle:

Every cycle in the reduced state space contains at least one state
that is fully expanded.

– expensive, since it requires cycle detection

8C3 further over-approximated for safety properties as C3stack (for
instance in SPIN):

If a state s is not fully expanded, then at least one transition in
ample(s) does not lead to a state that is on the search stack

– problem:

ionly applicable to stack-based DFS search

iA* does not use a search stack

45 © Stefan Leue 2004

DMC and Partial Order Reduction
♦ Overapproximations of C3 for non-DFS Algorithms
8C3duplicate

– if a state is not entirely expanded then at least one transition in
ample(s) does not lead into a previously visited state
iwill not necessarily close a cycle

8C3static

– if a state is not fully expanded, then there is no transition in
ample(s) which closes a cycle in the control flow of a local
process

46 © Stefan Leue 2004

Experiments with HSF-SPIN
♦ Safety Property Violation
8with po-reduction, with heuristic A* search

8 further experiments with DMC + PO
– no negative mutual influence
– occasional synergetic effects were observed

47 © Stefan Leue 2004

Trail Reordering using PO Techniques
♦ Trail Reordering
8 loss of solution quality when process can immediately perform

transition into error state but search algorithm postpones taking that
transition

8post-processing of error trail
– ignore those transitions in the error trail that are independent from

transition leading directly into error state
ido not disable each other, are commutative

– conditions to ignore irrelevant transition α
iα is invisible wrt the property to be analyzed
iα is independent from any later occurring transition
iα cannot enable any later occurring transition

– eliminate irrelevant transitions successively starting at the end of
the trail
ipreviously relevant transitions may become irrelevant, for

instance, if they were only dependent on an eliminated
transition

48 © Stefan Leue 2004

Trail Reordering using PO Techniques
♦ Experimental Results

8error states after reordering are very similar, differ only in transitions
relevant to other processes than those which define the property (two
processes assuming to be the leader)

49 © Stefan Leue 2004

Overview

1. Introduction

2. State Space Exploration Strategies

3. Directed Explicit-State Model Checking for Safety Properties

4. Directed Explicit-State Model Checking for Liveness Properties

5. Directed Explicit-State Model Checking and Partial-Order Reduction

6. Current and Future Research

7. Conclusion

50 © Stefan Leue 2004

DMC and Probabilistic Model Checking

Set of "Goal" States
• satisfying reachability condition
• jointly contributing to required
probability measure
CSL Model Checking
• establishes reachability and satisfaction
of probability measure
• no counterexample
Directed Model Checking on LTS
• short, partial counterexample

• large amount of probability mass
• efficient search in large state spaces

51 © Stefan Leue 2004

DMC and Abstraction Refinement

Finite Abstraction Construction

Further Issues
• alternative abstractions
• unified view / abstract interpretation

Abstractions for Concurrent Timed Systems

.. τ τ

τ

τ τ

τ
→ →

concurrent TA (inf. state) timed LTS (inf. state) abstract LTS (finite state)

τ
τ

τ

τ

τ

τ

τ
τ

Counterexample Generation

• model checking procedure on abstract LTS
•dealing with refinement predicates

• incorporate directed model checking
• short counterexamples for few refinement
predicates
• efficient traversal of abstract LTS

• heuristics
• structural information conc. TA / timed LTS
• abstraction predicates

• efficient heuristic search algorithms

abstract LTS
(refined)

DXMC
(heuristic search)

p1

p2

spuriousness test
τ

τ

τ

τ

τ

τ

τ
τ

p1

p2

52 © Stefan Leue 2004

Guided Search in FLAVERS

♦ Structural Heuristics
8e.g., in Java PathFinder (NASA Ames)

– maximize number of thread switches to detect concurrency
related bugs more easily

♦ FLAVERS (UMass Amherst)
8 finite-state verification based on data-flow abstracted model of

Ada/Java programs
– heuristics: minimal distance in task automaton to reach an

accepting (= property violating state) [FSE 2004]

53 © Stefan Leue 2004

Overview

1. Introduction

2. State Space Exploration Strategies

3. Directed Explicit-State Model Checking for Safety Properties

4. Directed Explicit-State Model Checking for Liveness Properties

5. Directed Explicit-State Model Checking and Partial-Order Reduction

6. Current and Future Research

7. Conclusion

54 © Stefan Leue 2004

Conclusion
♦ Directed Model Checking with A* and BF Searches for

Safety Properties
8BF for fast error finding, A* for later improvement
8shorter counterexamples than with DFS, often optimal
8often less exploration effort than with BFS
8even crude heuristic estimates improve error trail length
8 for dining philosophers, DMC with A* permits the solution of problems

for which DFS fails

♦ Liveness Properties
8certain improvements through A*+INDFS
8good results with trail improvement based on Hamming and FSM

distance metrics

♦ Partial Order Reduction and DMC
8approximations C3static and C3duplicate

8occasional loss of optimality
8good overall co-existence

55 © Stefan Leue 2004

References
♦ [FSE 2004]

8 J. Tan, G. S. Avrunin, L. A. Clarke, S. Zilberstein and S.Leue, HeuristicGuided, Counterexample
Search in FLAVERS, in: Proceedings of ACM SIGSOFT / FSE-12, November 2004.

♦ [STTT 2004]
8 S. Edelkamp, S. Leue, A. Lluch-Lafuente, Partial Order Reduction and Trail Improvement in

Directed Model Checking, to appear in: Int. Journal on Software Tools for Technology Transfer
(STTT), 2004.

♦ [SPIN 2002]
8 A.Lluch Lafuente, S. Edelkamp, and S. Leue, Partial Order Reduction in Directed Model Checking,

Proceedings of SPIN 2002, LNCS, Vol. 2318, Springer Verlag, April 2002.
♦ [STTT 2002]

8 S. Edelkamp, S. Leue, A. Lluch-Lafuente, Directed Explicit-State Model Checking in the Validation
of Communication Protocols, to appear in: Int. Journal on Software Tools for Technology Transfer,
2004.

♦ [AAAI-SS01]
8 S. Edelkamp, A. Lluch Lafuente and S. Leue, Protocol Verification with Heuristic Search, in: Proc.

AAAI-ss01 Workshop on Model-based Validation of Intelligence, Stanford University, March 2001.
♦ [SPIN 2001]

8 S. Edelkamp, A. Lluch Lafuente und S. Leue, Directed Explicit Model Checking with HSF-SPIN, in:
Proc. of SPIN 2001, LNCS, Vol. 2057, Springer Verlag, May 2001.

♦ [SoftMC 2001]
8 S. Edelkamp, A. Lluch Lafuente und S. Leue, Trail Directed Model Checking, in: Proc. Workshop on

Software Model Checking, ENTCS, Kluwer, July 2001
♦ [STTT 2000]

8 M. Kamel and S. Leue, Formalization and Validation of the General Inter-ORB Protocol (GIOP)
using Promela and SPIN, Software Tools for Technology Transfer, April 2000.

56 © Stefan Leue 2004

HSF-SPIN Experiments
♦ Impact of Range of Heuristic Functions
8deadlock detection, # of expanded states

57 © Stefan Leue 2004

Depth-Bounded DFS
♦ Finding Shortest Error Paths
8continue to explore when property-violating state found

– bound search depth to shallowest error found
8anomaly in depth-bounded search

– the fact that V has already been visited at higher depth means
that the shallower V will not be re-explored, i.e., error not found

– solution: enforce re-exploring of states reached along another,
shorter path (-DREACH in SPIN)

iworst-case exponential time penalty
Graphiken von A. Lluch-Lafuente

58 © Stefan Leue 2004

Informed Search
♦ Monotonicity of Heuristics
8monotonicity

– for each state u and each successor v of u:

h(u) - h(v) ≤ cost(u → v)
8 impact

– non-monotone heuristics may lead to exponential blow-up of
reopenings in A*

– in practice: reopening rarely observed for non-monotone
heuristics

59 © Stefan Leue 2004

IDA* for Safety Properties

60 © Stefan Leue 2004

Complexity Issues
♦ Model Checking
8Translation LTL -> Büchi automata: exponential in the length of the

formula
8DFS: O(n+e)

♦ A*
8maintaining the nodes

– open_list: priority queue
ias heap: O((n+e) log n)
ias Fibonacci-heaps: O(e + n log n)

8additional effort for the state exploration (current research)
– h admissible, h not monotone: exploration of exponentially many

nodes
– h inadmissible (no search for an optimal solution): avoidance of

re-opening
iHap: monotone, admissible
iHD without rendez-vous: monotone, admissible

	Directed Explicit-State Model Checking
	
	Overview
	Overview
	Motivation
	Motivation
	Motivation
	Motivation
	Model Checking
	Model Checking
	Model Checking of Safety Properties
	Model Checking of Safety Properties
	Model Checking of Safety Properties
	Counterexamples
	Counterexample with Depth-First Search (DFS)
	Overview
	Uninformed Search
	Informed Search
	Informed Search
	Informed Search
	Overview
	Directed Explicit-State Model Checking
	Heuristic Estimator Functions
	Heuristic Estimator Functions
	Heuristic Estimator Functions
	Heuristic Estimator Functions
	Heuristic Estimator Functions
	HSF-SPIN Experiments
	HSF-SPIN Experiments
	HSF-SPIN Experiments
	HSF-SPIN Experiments
	HSF-SPIN Experiments
	Overview
	Directed Model Checking - Liveness
	Directed Model Checking - Liveness
	Directed Model Checking - Liveness
	Directed Model Checking - Liveness
	Directed Model Checking for Liveness
	Trail Improvement for Liveness
	Trail Improvement für Liveness
	Overview
	Partial Order Reduction
	DMC and Partial Order Reduction
	DMC and Partial Order Reduction
	DMC and Partial Order Reduction
	Experiments with HSF-SPIN
	Trail Reordering using PO Techniques
	Trail Reordering using PO Techniques
	Overview
	DMC and Probabilistic Model Checking
	DMC and Abstraction Refinement
	Guided Search in FLAVERS
	Overview
	Conclusion
	References
	HSF-SPIN Experiments
	Depth-Bounded DFS
	Informed Search
	IDA* for Safety Properties
	Complexity Issues

