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Motivation

• Promela models are bounded models.

– The communication channels in a Promela model have fixed lengths.

• The Specification of buffer lengths causes two problems.

– The specified lengths are too small.
– The specified lengths are too large.

How could we know that the specified buffer lengths are sufficiently large?

• Some solutions to buffer overflow detection:

– Simulation.
– Verification of the absence of buffer overflow as a safety property.

2



An Incomplete Boundedness Test of CFSM-based Models

• We have developed a scalable incomplete boundedness test for CFSM models.

– If we remove all the fixed buffer lengths from a Promela model, it becomes
a CFSM model.

• The general idea of the incomplete test of CFSM-based models:

– Buffer-boundedness in CFSM-based models is undecidable.
– Certain aspects of a model is abstracted away to get an overapproximation.
– The boundedness problem of the obtained overapproximation can be solved

efficiently.
– If the overapproximation is bounded, the model is bounded. Otherwise, don’t

know!
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The Incomplete Boundedness Test of Promela Models

• Abstraction of Promela Models

– abstract from program code → CFSM
– abstract from order of messages → CFSM with Effect Vectors
– determine all simple cycles (only cyclic behaviours can cause unboundedness)
– assume that every cycle is enabled and any combination is possible →

Independent Cycle System

• Boundedness Check

– check if there is any combination whose combined effect is sending at least
one message without consumption of messages.

– Absence of such combination implies the boundedness of the model.
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An Example

proctype P{

do

:: CH?a -> CH!b; CH!c

od

}

proctype Q{

do

:: CH?b -> CH!a

:: CH?c -> CH!a

od

}

Figure 1: A Promela
Model
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Figure 2: The Independent
Cycle System

−x1 + x2 + x3 ≥ 0

x1 − x2 ≥ 0

x1 − x3 ≥ 0

x1 > 0

Figure 3: The LP
Problem

x1 = 1, x2 = 1, x3 = 1
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Estimating Buffer Bounds

• Assume a path P where the occupancy of a buffer reaches the maximum.

• P can be decomposed into an acyclic part and a cyclic part.

• Encode every acyclic effect with the cycle system to get an optimization LP
problem for computing the buffer bound estimate.

• The number of aggregate acyclic effects is exponential in the number of parallel
processes.

• An overapproximating solution is to use an upper bound of all acyclic effects
for each parallel process.
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Message Types

Problem 1: How to abstract messages in the system?

• A message consists of several fields.

• Using all combinations of the field values to identify messages is awkward and
UNNECESSARY.

• We discrimate between two messages only if they are treated differently in the
system.

do

:: C?5,x -> BRANCH1

:: C?4,y -> BRANCH2

od

– (5,2) and (5,3)
– (5,2) and (4,3)
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Message Types

Solution: Using Message Types

• A message type represents a group of messages that are treated exactly in the
same way in the system, and are distinguished from any other message.

do

:: C?5,x -> BRANCH1

:: C?4,y -> BRANCH2

od

– The constants in receive statements are critical to determining message
types.

– The message type (5,int) represents all the messages whose first field is 5.
– The message type (4,int) represents all the messages whose first field is 4.
– The message type (int,int) represents all other messages.
– We obtain three message types instead of 232 × 232 message types.
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Variables

Problem 2: How to model those send/receive statements where variables occur?

• Variables are used in send/receive statements.

– as a field of a message: C!5,x
– as an index of a channel array: C[x]!5,3

• The runtime value of a variable is unknown at compile time.

– The send/receive statements with variables are modeled in a nondeterministic
fashion.

– Learning about the ranges of variables may benefit us in getting a finer
overapproximation.

– Determination of ranges can be achieved by tracking the runtime values of
variables.

– However, tracking variables is very difficult.
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Tracking Variables

Solution: Computing the overapproximations of the ranges

• We compute an overapproximation of the range for each variable through
constant propagation.

– When a constant is assigned to a variable, include the constant into the
range of the variable.

– When a runtime value of a variable v2 is assigned to a variable v1, propagate
all possible runtime values of v2 to the range of v1.

– When an expression, whose runtime value is unknown, is assigned to a
variable, set the range of the variable to the domain of its type.
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Channel Assignments

Problem 3: How to deal with channel assignments?

• A channel is a variable whose runtime value points to an actual message queue.

– Each channel is initialized with a seperate queue.
– The queue pointed to by a channel can be changed through assignments.

C1 = C2

• When two channels point to the same queue, one does not need to discriminate
between messages exchanged in these two channels.

Solution: Merging channels

• A coarse solution is that any two channels in a channel assignment are merged
into one channel.

– An assignment does not generally affect every part of the model.
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Channel Assignments

Question: How can we know which part of the system can be affected by some
channel assignment?

• The Directed Acyclic Graph (DAG) of Strongly Connected Components (SCCs)
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Unbounded Process Creations

Problem 4: Do unbounded process creations affect our analysis?

Scenario 1: Process Creations in Local Loops

run Q()

The Process P The Process Q

!a

?b

!a

?b

The Process Q with Replication Transitions

Solution: Overapproximate the unbounded number of acyclic paths in Q by adding
an auxillary backward transition (replication transition) to the initial state to form
a cycle.
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Unbounded Process Creations

Scenario 2: Self-Creations

!a

?b

!a

?b

The Process P The Process P with Replication Transitions

run P() run P()

Note that not every acyclic path can exert its effect alone to the system an
unbounded number of times.
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Unbounded Process Creations

Scenario 3: Mutual Creations

!a !a

run P()run Q() run R()

The Process P The Process Q The Process R

?b

Note that the use of cross-processes replication transitions is not desirable because
we lose the locality of the model in our analysis.
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Unbounded Process Creations

Scenario 3: Mutual Creations

!a !a

run P()run Q() run R()

The Process P The Process Q The Process R

?b

Replacing cross-processes replication transitions with self-replication transitions is
a safe overapproximation but coarser.
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Case study: A GIOP Model

• IBOC: IMCOS Boundedness Checker

• GIOP: The CORBA Inter-ORB Protocol

• A Promela implementation

– 2 users, 1 GIOP client, 2 GIOP agents, and 2 servers: 7 running processes
– 78 control-states, 100 transitions.
– 9 communication buffers, 18 different message types.

• IBOC returned ”UNKNOWN” for the GIOP model and suggested two classes
of counterexamples.

• After we eliminated all the counterexamples, IBOC used only less than 3
seconds to prove the boundedness of the model and to compute all buffer
bound estimates.
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Conclusion

• Our incomplete boundedness analysis for CFSM-based models can be used to
test buffer overflow in Promela models.

• Main techniques: Abstraction, Overapproximation, Static analysis.

• Incomplete algorithms can be scalable.

• Future Works:

– Refine the abstraction of Promela models.
– Refine the computation of buffer bound estimates.
– More to do with counterexample analysis and counterexample-guided

refinement.
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