
A Scalable Incomplete Test for Message Buffer
Overflow in Promela Models

Stefan Leue, Richard Mayr, and Wei Wei

Department of Computer Science
Albert-Ludwigs-University Freiburg

Germany

1



Motivation

• Promela models are bounded models.

– The communication channels in a Promela model have fixed lengths.

• The Specification of buffer lengths causes two problems.

– The specified lengths are too small.
– The specified lengths are too large.

How could we know that the specified buffer lengths are sufficiently large?

• Some solutions to buffer overflow detection:

– Simulation.
– Verification of the absence of buffer overflow as a safety property.

2



An Incomplete Boundedness Test of CFSM-based Models

• We have developed a scalable incomplete boundedness test for CFSM models.

– If we remove all the fixed buffer lengths from a Promela model, it becomes
a CFSM model.

• The general idea of the incomplete test of CFSM-based models:

– Buffer-boundedness in CFSM-based models is undecidable.
– Certain aspects of a model is abstracted away to get an overapproximation.
– The boundedness problem of the obtained overapproximation can be solved

efficiently.
– If the overapproximation is bounded, the model is bounded. Otherwise, don’t

know!

3



The Incomplete Boundedness Test of Promela Models

• Abstraction of Promela Models

– abstract from program code → CFSM
– abstract from order of messages → CFSM with Effect Vectors
– determine all simple cycles (only cyclic behaviours can cause unboundedness)
– assume that every cycle is enabled and any combination is possible →

Independent Cycle System

• Boundedness Check

– check if there is any combination whose combined effect is sending at least
one message without consumption of messages.

– Absence of such combination implies the boundedness of the model.

4



An Example

proctype P{

do

:: CH?a -> CH!b; CH!c

od

}

proctype Q{

do

:: CH?b -> CH!a

:: CH?c -> CH!a

od

}

Figure 1: A Promela
Model

?a

!b

!c

(−1,1,1)

?b !a

(1,−1,0)

!a?c

(1,0,−1)

Figure 2: The Independent
Cycle System

−x1 + x2 + x3 ≥ 0

x1 − x2 ≥ 0

x1 − x3 ≥ 0

x1 > 0

Figure 3: The LP
Problem

x1 = 1, x2 = 1, x3 = 1

5



Estimating Buffer Bounds

• Assume a path P where the occupancy of a buffer reaches the maximum.

• P can be decomposed into an acyclic part and a cyclic part.

• Encode every acyclic effect with the cycle system to get an optimization LP
problem for computing the buffer bound estimate.

• The number of aggregate acyclic effects is exponential in the number of parallel
processes.

• An overapproximating solution is to use an upper bound of all acyclic effects
for each parallel process.

6



Message Types

Problem 1: How to abstract messages in the system?

• A message consists of several fields.

• Using all combinations of the field values to identify messages is awkward and
UNNECESSARY.

• We discrimate between two messages only if they are treated differently in the
system.

do

:: C?5,x -> BRANCH1

:: C?4,y -> BRANCH2

od

– (5,2) and (5,3)
– (5,2) and (4,3)

7



Message Types

Solution: Using Message Types

• A message type represents a group of messages that are treated exactly in the
same way in the system, and are distinguished from any other message.

do

:: C?5,x -> BRANCH1

:: C?4,y -> BRANCH2

od

– The constants in receive statements are critical to determining message
types.

– The message type (5,int) represents all the messages whose first field is 5.
– The message type (4,int) represents all the messages whose first field is 4.
– The message type (int,int) represents all other messages.
– We obtain three message types instead of 232 × 232 message types.

8



Variables

Problem 2: How to model those send/receive statements where variables occur?

• Variables are used in send/receive statements.

– as a field of a message: C!5,x
– as an index of a channel array: C[x]!5,3

• The runtime value of a variable is unknown at compile time.

– The send/receive statements with variables are modeled in a nondeterministic
fashion.

– Learning about the ranges of variables may benefit us in getting a finer
overapproximation.

– Determination of ranges can be achieved by tracking the runtime values of
variables.

– However, tracking variables is very difficult.

9



Tracking Variables

Solution: Computing the overapproximations of the ranges

• We compute an overapproximation of the range for each variable through
constant propagation.

– When a constant is assigned to a variable, include the constant into the
range of the variable.

– When a runtime value of a variable v2 is assigned to a variable v1, propagate
all possible runtime values of v2 to the range of v1.

– When an expression, whose runtime value is unknown, is assigned to a
variable, set the range of the variable to the domain of its type.

10



Channel Assignments

Problem 3: How to deal with channel assignments?

• A channel is a variable whose runtime value points to an actual message queue.

– Each channel is initialized with a seperate queue.
– The queue pointed to by a channel can be changed through assignments.

C1 = C2

• When two channels point to the same queue, one does not need to discriminate
between messages exchanged in these two channels.

Solution: Merging channels

• A coarse solution is that any two channels in a channel assignment are merged
into one channel.

– An assignment does not generally affect every part of the model.

11



Channel Assignments

Question: How can we know which part of the system can be affected by some
channel assignment?

• The Directed Acyclic Graph (DAG) of Strongly Connected Components (SCCs)

12



Unbounded Process Creations

Problem 4: Do unbounded process creations affect our analysis?

Scenario 1: Process Creations in Local Loops

run Q()

The Process P The Process Q

!a

?b

!a

?b

The Process Q with Replication Transitions

Solution: Overapproximate the unbounded number of acyclic paths in Q by adding
an auxillary backward transition (replication transition) to the initial state to form
a cycle.

13



Unbounded Process Creations

Scenario 2: Self-Creations

!a

?b

!a

?b

The Process P The Process P with Replication Transitions

run P() run P()

Note that not every acyclic path can exert its effect alone to the system an
unbounded number of times.

14



Unbounded Process Creations

Scenario 3: Mutual Creations

!a !a

run P()run Q() run R()

The Process P The Process Q The Process R

?b

Note that the use of cross-processes replication transitions is not desirable because
we lose the locality of the model in our analysis.

15



Unbounded Process Creations

Scenario 3: Mutual Creations

!a !a

run P()run Q() run R()

The Process P The Process Q The Process R

?b

Replacing cross-processes replication transitions with self-replication transitions is
a safe overapproximation but coarser.

16



Case study: A GIOP Model

• IBOC: IMCOS Boundedness Checker

• GIOP: The CORBA Inter-ORB Protocol

• A Promela implementation

– 2 users, 1 GIOP client, 2 GIOP agents, and 2 servers: 7 running processes
– 78 control-states, 100 transitions.
– 9 communication buffers, 18 different message types.

• IBOC returned ”UNKNOWN” for the GIOP model and suggested two classes
of counterexamples.

• After we eliminated all the counterexamples, IBOC used only less than 3
seconds to prove the boundedness of the model and to compute all buffer
bound estimates.

17



Conclusion

• Our incomplete boundedness analysis for CFSM-based models can be used to
test buffer overflow in Promela models.

• Main techniques: Abstraction, Overapproximation, Static analysis.

• Incomplete algorithms can be scalable.

• Future Works:

– Refine the abstraction of Promela models.
– Refine the computation of buffer bound estimates.
– More to do with counterexample analysis and counterexample-guided

refinement.

18


