Automated Freedom from Interference Analysis
for Automotive Software

Florian Leitner-Fischer
ZF TRW
78315 Radolfzell, Germany
Email: florian.leitner-fischer @zf.com

Abstract—Freedom from Interference for automotive software
systems developed according to the ISO 26262 standard means
that a fault in a less safety critical software component will
not lead to a fault in a more safety critical component. It
is an important concern in the realm of functional safety
for automotive systems. We present an automated method for
the analysis of concurrency-related interferences based on the
QuantUM approach and tool that we have previously developed.
We illustrate the proposed analysis using the case study of an
airbag system.

I. INTRODUCTION

The identification of interferences amongst system compo-
nents is an important aspect in safety analysis. It contributes
to fault containment and avoidance by ensuring that a fault
in one system component does not lead to a fault in another
component.

When considering software driven embedded systems, such
as automotive ECUs, interference can happen at various levels.
The software of one component can access and manipulate
another component by writing faulty data into the memory
allocated to the other component (data flow). One compo-
nent can even change the control of another component by
manipulating the runtime stack (control flow interference).
Finally, one component can stop to send information to another
component, or even worse, it can send faulty information to
another component (message flow, byzantine faults). When
considering concurrently executing software components, the
faulty behavior of one component may cause the system to go
into a deadlock. Likewise, one component executing with high
priority may starve other components at lower priorities. This
is particularly damaging if the higher priority component goes
into a livelock that is not preempted by the operating system
scheduler. Finally, various damaging scenarios can occur if
the execution of a task in a component leads to exceeding
real-time bounds in another component.

The investigation of these types of interference is of par-
ticular importance in the safety analysis of safety-critical
automotive software. The standard ISO 26262 [1] defines
various Automotive Safety Integrity Levels (ASILs) for dif-
ferent safety-critical functions implemented in an automobile,
ranging from A to D, with ASIL D being the ASIL that cor-
responds to the highest criticality. ISO 26262 defines freedom

Stefan Leue
Chair for Software and
Systems Engineering
University of Konstanz
78457 Konstanz, Germany
Email: stefan.leue @uni-konstanz.de

Sirui Liu
Department of Computer and
Information Science
University of Konstanz
78457 Konstanz, Germany
Email: sirui.liu@uni-konstanz.de

from interference (FFI) as the “absence of cascading failures
between components that could lead to the violation of [some]
safety requirement” (c.f. part 6 of [1]).

Special interest in establishing FFI for automotive systems
developed according to 26262 is motivated by the fact that the
standard allows functions assessed at a higher ASIL level to
be implemented by redundant functions developed according
to development methods applicable to lower ASIL levels,
provided there is no interference and dependence amongst
these lower level implemented functions. This is referred to
as "ASIL decomposition”. Performing ASIL decomposition
is attractive since the development process requirements that
26262 imposes on lower criticality ASILs are lower than on
higher level ASILs. This has a significant impact on the overall
development cost of some function: the total development cost
for n redundant lower ASIL components may be less than
the cost for developing one high ASIL component, while still
ensuring high dependability of the resulting system.

Various techniques can be employed that will ensure FFI.
Most prominent in this regard is the use of Memory Protection
Units (MPUs) which ensure at run-time that a software task
is only accessing memory that was allocated to it. Contrary to
this approach, we are proposing a design-time analysis method
that allows the designer to avoid certain types of interference
before the product is manufactured and put into operation.

In light of ever increasing system complexity, manual
analysis methods to ensure FFI will not succeed in the long
run. Testing is not applicable, since the concurrency-related
interference problems such as deadlock and livelock that we
will focus on in this paper cannot be effectively tested. Also,
testing is incomplete, making it a questionable method in
functional safety analysis. We therefore propose an automated,
algorithmic analysis method to establish the absence of inter-
ferences based on the formal methods of model- and causality
checking [2], [3]. The analysis is based on our previously
developed QuantUM approach and tool. By this approach we
are able to directly access architecture-level SysML / UML
models given by some industry-strength modeling tool, such
as IBM Rational Rhapsody, and analyze these models for
interference violations without the need for user intervention.
We show how to capture FFI analysis in this setting and how

to perform the analysis. We illustrate our approach using a
case study and discuss future developments.

Related Work: We are not aware of any comparable, formal
methods based FFI analysis method that focuses on concur-
rency faults.

II. PRELIMINARIES

A. The QuantUM Approach

In precursory work [4], [5], [3] we have proposed the
QuantUM approach to support the automated, algorithmic
functional safety analysis of critical system architectures.
QuantUM analyses are based on SysML [6] system architec-
ture models. Designers will provide models for the structure
(block definition diagrams, internal block diagrams) as well
as the normal and the fault behavior in the form of SysML
StateChart diagrams. We provide an extension to SysML in
the form of a stereotype that allows the designer, amongst
other things, to distinguish normal and faulty behavior and
to specify failure rates for individual architectural blocks. The
thus extended SysML models are edited in a SysML tool, such
as IBM Rational Rhapsody, and their XMI representation is
then parsed and input by the prototypical QuantUM' tool that
we have developed. QuantUM uses various model checking [2]
tools in order to perform a causality analysis, that we refer
to as causality checking [3], in order to compute ordered
sequences of events that lead to the violation of a safety
goal. Model checking is an automated, algorithmic technique
to systematically explore the state space of the system, i.e., all
possible configurations of the system, in order to discover the
reachability of undesired system states. We have performed
various large-scale case studies using this tool suite [7].

B. FFI According to 1SO 26262

Space limitations will not permit us to fully explore the
intricate relationships of cascading faults, interference and
independence in ISO 26262. The informative Annex D of part
6 of ISO 26262 lists in clause D.2.2 ("Timing and Execution’)
the following types of faults to be considered for software
elements considered in each software partition: a) blocking of
execution, b) deadlocks, c) livelocks, d) incorrect allocation
of execution time and e) incorrect synchronization between
software elements. The notion of concurrency does not occur
in this context, and no examples for these faults are given, but
we assume that fault types b), c¢) and e) are directly related
to concurrency issues. Fault type e) probably refers to what
is typically considered to be race conditions in concurrent
systems. The technology of model and causality checking that
we employ in our approach is very well suited for the analysis
of these types of concurrency problems, which is why we
will focus on this important aspect of FFI analysis. Notice
that according to part 8 of ISO 26262, clause 9.4.1.1, model
checking is an admissible method for verification.

Uhttps://se.uni-konstanz.de/research 1/quantum/

III. FFI ANALYSIS USING QUANTUM

The FFI analysis method that we propose in this paper will
focus on concurrency issues that potentially entail cascading
faults. The analysis will involve the following steps:

1) System Modeling: The normal behavior of every system
component will be modeled in SysML using state ma-
chine diagrams. Emphasis should be put on modeling
the chain of data transfer and communication between
components in a system.

2) Fault Seeding: This step involves identifying system
components that are involved in the occurrence of a con-
currency fault. The considered fault needs to be seeded
in the model which involves modifying the previously
obtained system model.

3) Fault State Identification & QuantUM Tagging: A state
of the overall system needs to be identified that corre-
sponds to a violation of the safety goal of the system.
Using the QuantUM provided stereotype the system
components that the analysis is supposed to consider
will be tagged. At the same time, the normal and the
failure behavior will be identified.

4) QuantUM FFI Analysis: The subsequent analysis of the
model using the QuantUM tool is fully automatic. The
result will be a fault tree displaying ordered sequences of
events that are causal for the occurrence of the identified
concurrency issue.

5) Result Interpretation: The final step will be an interpre-
tation of the obtained result. This is of course to some
extent specific to the property that is to be analyzed,
but in principle proceeds as follows: If an event of a
component with lower ASIL occurs in the ordered set
of causal events prior to an event with higher ASIL, this
is an indication for an interference.

IV. CASE STUDY
A. Background

On the one hand, a deadlocks within a component causes
interference on other components that depend on that locked
component, it may remain questionable whether an interfer-
ence analysis is necessary for deadlocks or livelocks. Dead-
locks and livelocks are caused by software errors and conse-
quently, according to the ISO 26262 philosophy, they could
be detected and corrected at software design time. In fact,
tools and techniques exist to discover possible deadlocks in a
design model of a software system [8]. It is hence questionable
whether these errors should be subject to FFI analysis at all.
On the other hand, we assume that, in real world scenarios,
the system is not free from software errors. Deadlocks and
livelocks then will still exist in the system, so it still remains
our interest to find out whether potential errors of this kind in
subsystems can be source of a violation of FFL

We consider the abstract architecture of an Airbag Control
Unit. We are interested in analyzing what impact the failure
of two redundant decision paths executing on one micro con-
troller has on achieving the safety goal of the overall system.
The system safety goal is to avoid unintended deployment, i.e.,

the case where no crash occurs but the airbag is deployed.If
such an impact can be proven, we have shown the presence
of a cascading failure, which implies interference. Since the
QuantUM analysis that we perform is complete, which means
that all possible system executions will be explored, we can
infer from the absence of such an impact that FFI holds for the
considered safety goal, concurrency fault and system model.
Notice that the two decision paths could be the result of some
ASIL decomposition, which would be justified in case our
analysis proved FFIL.

Prior to performing this case study, we carried out an
analysis of the interference that could be caused by the
subsystem consisting of the two decision paths going into a
mutual deadlock. Although the result seems to be trivial, given
that a (sub-)system is not able to perform any operations when
all its components are in a deadlock, we were able to show this
behavior analytically using QuantUM analysis as follows. We
modeled the normal behavior pattern of the system in such
a way that it was impossible for the two decision paths to
end up in a deadlock, as well as a failure pattern, where the
system will surely end up in a deadlock. The resulting fault
tree with the deployment of the airbag as top level event did
only show events of the normal operation, no events in the
failure pattern were found in the fault tree, which indicates
that a behavior pattern where all the deciding components will
surely end up in a deadlock can not lead to a deployment
of the airbag. On the other hand, by removing the normal
behavior pattern, it was not possible to deploy the airbag.
This analysis gave us an demonstration on how QuantUM
can show us that the first safety goal is not violated by a
deadlock of the two decision paths. Knowing that a deadlock
will not lead to a deployment, the next question was whether
we can introduce a safety mechanism that ensures the second
safety goal that the airbag should deploy when a crash occurs.
In this case study, we adapt the behavior pattern of the two
decision paths in such a way that they can lead to a deadlock
and introduce a watchdog module that detects whether the two
decision paths are currently in a deadlock condition, resetting
them if necessary.

B. Freedom From Interference Analysis

1) System Modeling: We begin by modeling the normal
behavior of the decision paths and consider the main path
in our description. The ’safing” path would be modeled in
a similar fashion. As shown in Figure 1, upper part, the
behavior of the decision path is such that by default at the
system start the decision path goes to the idle state. When a
crash is detected, the considered decision path checks whether
the other decision path also detected a crash. No matter
whether there is a response from the other path, or what that
response is, a deploy signal is sent out. Benefits at this level
of abstraction is that we do not need to consider modeling the
communication between the two decision paths since it does
not have an influence on the emission of the deploy signal.
In a real implementation the response from the other decision
path could for instance be used to log an error in case not
both decision paths compute the same result.

stm [«QSyMComponent» Block] Main_uC [Main_Normal_O peration]

o2

[Watchdog.resetMan == true]

/} main_idle_reset

main_normal_operation

main_check_safing
[=

[Watchdog.resetMain == false]

K> main_idle_normal j\
)—//

L

\/

«QSyMStateConf ()
main_check_safir

\‘H\V Watchdog.resetMain == true]

main_check_deadlock2 =

«QSyMsStateConfigurations i
main_deploy_signal

main_deadlock_pattern

[Safing_uC.safingCheckMain == true]

main_response_safing @

reset_main

Fig. 1. Behavior of the System

2) Fault Seeding: We continue by seeding a deadlock into
the model. In a real design situation this may, for instance,
be caused by a coding error. As seen in Figure 1, lower part,
similar to the normal behavior the decision path enters the
idle state when the system starts. In the idle state, there are
two possibilities. First, after a crash is detected, the considered
decision path enters the state where it communicates with the
other decision path. The difference to the non-seeded model
is that the decision path cannot proceed with its computation
until it received a response from the other decision path
containing information about whether it also detected a crash.
When both decision paths enter this state, a circular wait
emerges between them, which indicates a deadlock between
the two decision paths. Second, the considered decision path
may receive a signal requesting a “crash detected” response
from the other decision path (refer to the first possibility). In
this case, the decision path that received the request, enters the
response state. In this state, it sends out a response message,
containing information about whether it also detected a crash,
to the other decision path.

Knowing that there is a seeded interference error present, we
want to check whether there is a way to deploy the airbag with
the introduced safety mechanism. To check this, we model the
behavior of the airbag. As shown in Figure 2, the airbag can
enter a ready state when one decision path sends out a deploy
signal. It must receive a deploy signal from the other decision
path to actually deploy.

A watchdog (Figure 3) will monitor the two decision paths.
Since we know that there is a deadlock deliberately seeded in
our model, we only need the watchdog to check whether our
system entered the state where the two decision paths are in

the seeded deadlock state and reset the two decision paths if
necessary.

stm [«QSyMComponent» Blodk] Airbag [Airbag_Normal_O peration]

airbag_idle

[Main_uC.mainNormalSignal == true]

airbag_ready_2

[Safing_uC.safingNormalSignal == true]

«QSyMStateConfig
airbag_deploy

Fig. 2. Behavior of the Airbag

stm [«QSyMComponents Block] Watchdog [Watchdog_Nor mal]

K}» watchdog_idle

[Main_uC.mainDeadlodk == frue && Safing_uC.safingDeadlock == true]

watchdog_reset (.;5)

Fig. 3. Behavior of the Watchdog

3) Fault State Identification & QuantUM Tagging: It has
to be determined which state of the overall system we want
to analyze. We choose this state according to the safety
requirements of the system. In this case, it is the deploy state of
the airbag module, which is shown in Figure 2. Consequently,
we annotate the airbag deploy state in the airbag module as a
critical state, and pass the annotated model in XMI format to
the QuantUM tool.

4) QuantUM FFI Analysis: QuantUM analyzes the SysML
model and returns the fault tree depicted in Figure 4. The anal-
ysis took about one minute of execution time on a computer
with a Core 2 Duo CPU@2.26GHz and 4GB RAM.

5) Result Interpretation: The QuantUM tool automatically
generates fault trees that visualize ordered sequences of events
that are causal for the occurrence of a top level event. We
slightly abuse the fault tree formalism here in order to visualize
causal events that lead to the top level event representing the
deployment of the airbag, which does of course not correspond
to a hazard but to an event whose occurrence illustrates the
satisfaction of the safety goal that we pursue. The fault tree,
which is reproduced in Figure 4, shows that there are two
situations that can lead to an airbag deployment. First, the left
part of the fault tree shows a sequence of exclusively normal
operation events, this indicates that the airbag can deploy when
functioning normally. Secondly, the right part of the fault tree
shows a sequence of the two decision paths going into a
mutual deadlock which is then reset by the watchdog. After the
reset, a sequence of normal operations follows, leading into the
airbag_deploy state, which corresponds to the top level event
of the fault tree. From this we conclude that the watchdog we
introduced ensures deployment of the airbag even though a
deadlock was present. Hence, we have shown the effectiveness
of the introduced safety mechanism.

V. CONCLUSION

We have presented an automated approach to FFI analysis
based on the QuantUM analysis method and tool that we have
previously developed. We have applied this approach to FFI
analysis of a Airbag Control Unit case study. We have shown
that the technology that we have used, in particular model and
causality checking, are suited to analyze FFI for concurrency-
related faults, such as deadlock. Future research will address
the question how to automate the fault seeding, so that
the analysis can be performed fully automatically. A further
objective will be to incorporate the analysis into standard
system and safety design processes. It is our impression that
more discussion in the ISO 26262 standardization body is
required in order to clearly define and characterize the fault
types that are to be considered with respect to FFI, in particular
as far as clauses D.2.2 and D.2.4 of part 6 of the standard are
concerned. We see great potential in using formal methods to
characterize these properties and to provide automated, formal
methods based FFI analyses for them.

REFERENCES

[1] ISO, “Road vehicles - functional safety,” International Organization for
Standardization, Geneva, Switzerland, ISO 26262, 2011.

[2] C. Baier, J.-P. Katoen et al., Principles of model checking. MIT press
Cambridge, 2008, vol. 26202649.

[3] F. Leitner-Fischer and S. Leue, “Causality checking for complex system
models,” in VMCAI, ser. Lecture Notes in Computer Science, vol. 7737.
Springer, 2013, pp. 248-267.

, “Quantum: Quantitative safety analysis of UML models,” in QAPL,
ser. EPTCS, vol. 57, 2011, pp. 16-30.

[S] ——, “Probabilistic fault tree synthesis using causality computation,”
1JCCBS, vol. 4, no. 2, pp. 119-143, 2013. [Online]. Available:
http://dx.doi.org/10.1504/IJCCBS.2013.056492

[6] OMG, “Omg systems modeling language,” OMG, Tech. Rep., 2015.
[Online]. Available: http://www.omg.org/spec/SysML/1.4/PDF/

[7] F. Leitner-Fischer and S. Leue, “Spincause: a tool for causality checking,”
in SPIN. ACM, 2014, pp. 117-120.

[8] G. J. Holzmann, The SPIN Model Checker: Primer and Reference
Manual. Addision—Wesley, 2003.

[4]

£

R
L]
:

main normal_operation
S

N

S

Deplo

main_normal gga"atlon

[main_deadlock pattern |

N

R

main check deadlock2
S
LN

watchdog idle
Sy

N
S

[safing_normal

operation |

| safing deadlock pattern

Fig. 4. Fault Tree of the deployment of the Airbag

e
[idle safing |
D

safing check main

safing check deadlock?
S

watchdog reset
S

main_nommal operation

— 1
—\
-\
A\
“.
A

safing

