
Counterexample-Based 
Refinement for a Boundedness

Test for CFSM
Languages

Wei Wei

Chair for Software Engineering
Department of Computer and Information Science

University of Konstanz
Germany



2

• It is a joint work with

Stefan Leue.

– University of Konstanz

– Email: Stefan.Leue@inf.uni-konstanz.de



3

Outline

• CFSMs and Buffer Boundedness

• Boundedness Test and Counterexamples

• Sources of Imprecision

• Cycle Code Analysis

• Graph Structure Analysis

• Complexity

• Experimental Results

• Conclusion and Future Work



4

Communicating Finite State 
Machines

• CFSMs are to model discrete-state systems
consisting of a number of processes that
– execute concurrently,

– and communicate with each other via asynchronous
message exchanges.

Process Left Process Right

Buffer B1

Buffer B2

B1?b

B2!a

b
b

b

a
a
a

b

x=0

(x==0) (x==1)

B1!b B2?a

x=0x=1



5

Buffer Boundedness

• Buffers are assumed to have unbounded capacities.
– the number of messages in a buffer may grow unboundedly.

• Unboundedness is not desired.
– limited resources available.

– fails reachability analyses.

Process Left Process Right

B1?b

B2!a

b
b

b

a
a
a

b

x=0

(x==0) (x==1)

B1!b B2?a

x=0x=1

Buffer B1

Buffer B2



6

An Incomplete Boundedness
Test

• Buffer boundedness for CFSMs is undecidable.

• We developed an abstraction-based test.

Stefan Leue, Richard Mayr, and Wei Wei: A Scalable Incomplete Test for the Boundedness
of UML RT Models, Proceedings of the International Conference on Tools and Algorithms 
for the Construction and Analysis of Systems TACAS 2004.

Stefan Leue, Richard Mayr, and Wei Wei: A Scalable Incomplete Test for Message Buffer 
Overflow in Promela Models, Proceedings of the 11th International SPIN Workshop on 
Model Checking Software SPIN 2004.

• The idea behind: only cyclic behavior may cause 
unboundedness.
– concentrate on control flow cycles of state machines.



7

An Incomplete Boundedness
Test

• What we abstract from:
– program code

– message orders

– activation conditions of cycles

– cycle dependencies



8

An Incomplete Boundedness
Test

• What we abstract from:
– program code

– message orders

– activation conditions of cycles

– cycle dependencies

Process Left Process Right

B1?b

B2!a

b
b

b

a
a
a

b

x=0

(x==0) (x==1)

B1!b B2?a

x=0x=1

Buffer B1

Buffer B2



9

An Incomplete Boundedness
Test

• What we abstract from:
– program code sequences of send or receive statements

– message orders

– activation conditions of cycles

– cycle dependencies

Process Left Process Right

B1?b

B2!a

b
b

b

a
a
a

b

B1!b B2?a

Buffer B1

Buffer B2



10

An Incomplete Boundedness
Test

• What we abstract from:
– program code

– message orders (a,b,b,a) (2,2)

– activation conditions of cycles

– cycle dependencies

Process Left Process Right

B1?b

B2!a

b
b

b

a
a
a

b

B1!b B2?a

Buffer B1

Buffer B2



11

An Incomplete Boundedness
Test

• What we abstract from:
– program code

– message orders: effect vector

– activation conditions of cycles

– cycle dependencies

Process Left Process Right

b
b

b

a
a
a

b

Buffer B1

Buffer B2

(0,-1)

(1,0)

(0,1)
(-1,0)



12

An Incomplete Boundedness
Test

• What we abstract from:
– program code

– message orders

– activation conditions of cycles

– cycle dependencies

Process Left Process Right

b
b

b

a
a
a

b

Buffer B1

Buffer B2

(0,-1)

(1,0)

(0,1)
(-1,0)



13

An Incomplete Boundedness
Test

• The abstract model

(0,-1)

(1,0)

(0,1) (-1,0)

(1,-1) (0,1) (-1,0)



14

An Incomplete Boundedness
Test

• Use an integer linear programming (ILP) problem to 
check all the combinatory effects of cycles.

(1,-1)

(0,1)

(-1,0)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
>⎟⎟

⎠

⎞
⎜⎜
⎝

⎛−
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− 0

0
0

1
1
0

1
1

321 xxx

• Any particular linear combination, whose
combinatory effect has only nonnegative
components and at least one positive 
component, indicates unboundedness of 
the abstract model.
• No such combination proves
boundedness (of the concrete model.)



15

An Incomplete Boundedness
Test

• Any particular linear combination, whose 
combinatory effect has only nonnegative 
components and at least one positive component, 
indicates unboundedness of the abstract model.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
>⎟⎟

⎠

⎞
⎜⎜
⎝

⎛−
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− 0

0
0

1
1
0

1
1

321 xxx

A solution: x1 = 0; x2 = 1; x3 = 0



16

Counterexamples

• Counterexamples are sets of cycles.
– only cycles in a counterexample are executed an infinite 

number of times.

• A counterexample is constructed from a particular 
solution to the boundedness determining ILP 
problem.
– consists of all the cycles whose corresponding variable 

receives a non-zero value in the solution.



17

Counterexamples

• A counterexample is constructed from a particular 
solution to the boundedness determining ILP 
problem.
– consists of all the cycles whose corresponding variable 

receives non-zero value in the solution.

A solution: x1 = 0; x2 = 1; x3 = 0

(0,1)



18

Counterexample Spuriousness

x=0

(x==0) (x==1)

B1!b B2?a

x=0x=1

• The left cycle cannot be repeated without executions
of the right cycle.
• The counterexample constructed from the solution x1

= 0; x2 = 1; x3 = 0 is spurious.



19

Sources of Imprecision

• What we have abstracted from:
– program code

• cycle conditions on variables are abstracted away.

– message orders

• not all the messages in a buffer may be available for trigger a 
transition.

– activation conditions of cycles

• a cycle may not be reachable from the initial configuration of 
the concrete model (no enough messages).

– cycle dependencies

• executions of cycles may depend on each other.



20

Sources of Imprecision

• What we have abstracted from:
– program code

• loop conditions on variables are abstracted away.

– message orders

• not all the messages in a buffer may be available for trigger a 
transition.

– activation conditions of cycles

• a cycle may not be reachable from the initial configuration of 
the concrete model (no enough messages).

– cycle dependencies

• executions of cycles may depend on each other.



21

Sources of Imprecision

• We consider the following types of missing detail of 
concrete models:
– cycle dependencies imposed by cycle conditions on 

variables.
• locally modified variables local dependencies.

• integer variables.

• linear conditions and linear assignments.

– cycle dependencies imposed by control flow graph
structures.

• We determine these two types of cycle
dependencies.
– used to determine spuriousness for counterexamples.

– used to refine abstract models.



22

Cycle Code Analysis

• The executability of a cycle is determined by all the
condition statements in the cycle code.

• We check, for each individual condition statement
(B), the constraint that it addes on cycle executions.
– the maximal number of times maxB that (B) can be

executed while the variables in the condition B are
modified only within the cycle.

• the cycle can be repeated without interruption no more than
maxB times.

• every maxB times that the cycle is repeated, some other
cycles have to be executed at least once.



23

Cycle Code Analysis

x=0

(x==0) (x==1)

B1!b B2?a

x=0x=1

• Neighboring cycles.



24

Cycle Code Analysis

x=0

(x==0) (x==1)

B1!b B2?a

x=0x=1

• Neighboring cycles.
• Supplementary cycles with respect to the condition B.

• modify some variables in B to render B to be
satisfied again.



25

Cycle Code Analysis

x=0

(x==0) (x==1)

B1!b B2?a

x=0x=1

• Neighboring cycles.
• Supplementary cycles with respect to the condition B.

• modify some variables in B to render B to be
satisfied again.

• The right cycle is both a neighboring cycle and a 
supplementary cycle with respect to x==0.



26

Determining maxB

• It is generally impossible to determine maxB.

B maxB



27

Determining maxB

• It is generally impossible to determine maxB.

B

d1 ∨ d2 ∨ ... ∨ dn

l1 ∧ l2 ∧ ... ∧ lm

a1 x1 +... +ak xk ≥ b

(control expression)

maxB



28

Determining maxB

• It is generally impossible to determine maxB.

B

d1 ∨ d2 ∨ ... ∨ dn
maxB,d1, ..., maxB, dn

l1 ∧ l2 ∧ ... ∧ lm

a1 x1 +... +ak xk ≥ b

(control expression)

maxB



29

Determining maxB

• It is generally impossible to determine maxB.

B

d1 ∨ d2 ∨ ... ∨ dn
maxB,d1+ ... + maxB, dn

l1 ∧ l2 ∧ ... ∧ lm

a1 x1 +... +ak xk ≥ b

overapproximated by

(control expression)

maxB



30

Determining maxB

• It is generally impossible to determine maxB.

B

d1 ∨ d2 ∨ ... ∨ dn
maxB,d1+ ... + maxB, dn

l1 ∧ l2 ∧ ... ∧ lm

a1 x1 +... +ak xk ≥ b

overapproximated by

maxB, d1, l1, ... maxB, d1, lm

(control expression)

maxB



31

Determining maxB

• It is generally impossible to determine maxB.

B

d1 ∨ d2 ∨ ... ∨ dn
maxB,d1+ ... + maxB, dn

l1 ∧ l2 ∧ ... ∧ lm

a1 x1 +... +ak xk ≥ b

overapproximated by

min{ maxB, d1, l1, ... maxB, d1, lm }

is

(control expression)

maxB



32

Determining maxB

• Compute maxB, d1, l1

a1 x1 +... +ak xk ≥ b

– We can only determine maxB, d1, l1 if the value of the control
expression a1 x1 +... +ak xk is always decreased.

• step values of the control expression are always negative.

• determine the initial values of the control expression.

• determine the maximal step value of the control expression.

• maxB, d1, l1 is bounded by

max{ 1, p(maximal_initial_value – b) / - maximal_step_valueq }

– Otherwise, we set maxB, d1, l1 to be ∞.



33

Determining maxB

x=0

(x==0) (x==1)

B1!b B2?a

x=0x=1

(x≥ 0 ∧ –x≥ 0)

control expression: -x
initial value: 0
maximal step value: -1
max-x≥ 0: 1

control expression: x
initial value: 0
maximal step value: 1
maxx≥ 0: ∞

max: x´-x;

x = 0;
x´ = 1;



34

Determining Neighboring and 
Supplementary Cycles

• Neighboring cycles are easy to collect.

• It is generally impossible to determine the exact set
of supplementary cycles.
– overapproximation: a cycle is regarded as supplementary if

it modifies some variables in the considered condition.

– a finer approach: exclude all the cycles whose executions
increase the value of each control expression in the
condition.

• much more expensive, involving code analysis of all the
cycles that modify some variables in the condition.



35

Determining Spuriousness

• Every maxB times that the cycle is executed,
– at least one neighboring cycle must be executed.

– at least one supplementary cycle with respect to B must be 
executed.

• A counterexample is spurious if one of its member
cycle violates the above property.



36

Refinement

• Every maxB times that the left cycle is executed,
– at least one neighboring cycle must be executed

x2 · maxB x3 x2 · x3 

– at least one supplementary cycle must be executed
x2 · maxB x3 x2 · x3 

(0,1) (-1,0) (-1,0)

neighboring
cycle(s)

supplem. 
cycle(s)

x2 x3 x3

maxB = 1



37

Refinement without maxB

• Two alternatives:

– the left cycle is not executed infinitely often.

x2 = 0

(0,1) (-1,0) (-1,0)

neighboring
cycle(s)

supplem. 
cycle(s)

x2 x3 x3

maxB ?



38

Refinement without maxB

• Two alternatives:

– the left cycle is executed infinitely often, then at least one of the
neighboring cycles and at least one of the supplementary cycles
must be also executed infinitely often.

x2 > 0 ∧ x3 > 0 ∧ x3 > 0

(0,1) (-1,0) (-1,0)

neighboring
cycle(s)

supplem. 
cycle(s)

x2 x3 x3

maxB ?



39

Refinement without maxB

(0,1) (-1,0) (-1,0)

neighboring
cycle(s)

supplem. 
cycle(s)

x2 x3 x3

maxB ?

ILP

ILP

ILP

refinement
without
maxB

–x2 = 0

x2 > 0 ∧ x3 > 0 ∧ x3 > 0



40

Graph Structure Analysis

• Strongly connected components (SCCs)
– cycles in different SCCs are „repelling“

each other.

• Cycles that do not share common states need others
to bridge them.



41

Self-Connected Cycle Set

• A set of cycles in the same process is self-
connected if any two cycles in the set are reachable
from each other by traversing through only the
cycles in the set.

• A counterexample is spurious if, for some process, 
the set of all member cycles in that process is not
self-connected.



42

Refinement

• Consider a counterexample that contains C1 and C2

only.

C1

C3
C4

C5
C6

C2



43

Refinement

• Consider a counterexample that contains C1 and C2

only.
– determine all the self-connected sets that contain C1 and 

C2.

C1

C3
C4

C5
C6

C2



44

Refinement

• Consider a counterexample that contains C1 and C2

only.
– determine all the self-connected sets that contain C1 and 

C2.

C1

C3
C4

C5
C6

C2



45

Refinement

• Consider a counterexample that contains C1 and C2

only.
– determine all the self-connected sets that contain C1 and 

C2.

• if there is no such set, then C1 and C2 belong to differenct
SCCs.

C1

C3
C4

C5
C6

C2



46

Refinement

• Several alternatives:
– C1 and C2 are not executed infinitely often.

x1 = 0 ∧ x2 = 0

C1

C3
C4

C5
C6

C2



47

Refinement

• Several alternatives:
– C1 is not executed infinitely often while C2 is.

x1 = 0 ∧ x2 > 0

C1

C3
C4

C5
C6

C2



48

Refinement

• Several alternatives:
– C2 is not executed infinitely often while C1 is.

x1 > 0 ∧ x2 = 0

C1

C3
C4

C5
C6

C2



49

Refinement

• Several alternatives:
– C1 and C2 are both executed infinitely often, C3 and C4 are

also executed infinitely often.

x1 > 0 ∧ x2 > 0 ∧ x3 > 0 ∧ x4 > 0

C1

C3
C4

C5
C6

C2



50

Refinement

• Several alternatives:
– C1 and C2 are both executed infinitely often, C5 and C6 are

also executed infinitely often.

x1 > 0 ∧ x2 > 0 ∧ x5 > 0 ∧ x6 > 0

C1

C3
C4

C5
C6

C2



51

Refinement

ILP

ILP

ILP
refinement

ILP

ILP

...

n + 3 new ILP 
problems where n 
is the number of 
self-connected
cycle sets, which
could be
exponential in the
number of cycles.



52

Coarser Refinement

• x1 = 0 ∧ x2 = 0

• x1 = 0 ∧ x2 > 0

• x1 > 0 ∧ x2 = 0

• x1 > 0 ∧ x2 > 0 ∧ x3 + x5 > 0 ∧ x4 + x6 > 0

C1

C3
C4

C5
C6

C2



53

Coarser Refinement

• x1 = 0 ∧ x2 = 0

• x1 = 0 ∧ x2 > 0

• x1 > 0 ∧ x2 = 0

• x1 > 0 ∧ x2 > 0 ∧ x3 + x5 > 0 ∧ x4 + x6 > 0

C1

C3
C4

C5
C6

C2



54

Complexity

• Counterexample spuriousness is undecidable.

• High complexity in theory.
– The number of ILP-problems to determine the maximal 

step value of a control expression is exponential both in 
the number of condition statements and in the size of each
condition statement.

• Efficient in practice.

d1,1 ∨ ... ∨ d1,m

d2,1 ∨ ... ∨ d2,n

d3,1 ∨ ... ∨ d3,k



55

Experimental Results

• IBOC (IMCOS Boundedness Checker)

http://www.inf.uni-konstanz.de/soft/tools_en.php?sys=3

• Tests on 31 models:

– 8 of 31 are proved bounded without counterexamples reported.

– 2 of 31 are proved bounded after refinement.

– IBOC returned „UNKNOWN“ for 21 of 31.

• 12 of 21 are truly unbounded.

• On the model of the MVCC protocol, IBOC found 4 
counterexamples and determined 3 of them as spurious.



56

Conclusion

• Determine spuriousness for counterexamples by
analyzing cycle code and control flow graph
structures.

• Refine abstract models by use of cycle dependency
information obtained from counterexample analyses.

• We have implemented the method in IBOC.



57

Future Work

• Study of global cycle dependencies.

• Application of the method to UML RealTime models.



58

Thank you!

Welcome to visit Konstanz and the beautiful Bodensee.


