Counterexamples for Timed Probabilistic Reachability

Stefan Leue

University of Konstanz Chair for Software Engineering

Stefan.Leue@uni-konstanz.de http://www.inf.uni-konstanz.de/~soft

17 August 2005 SUNY Stony Brook

Copyright © Stefan Leue 2005

Joint work with...

- Husain Aljazzar
 - University of Konstanz
- Holger Hermanns
 - Saarland University

Outline

- Motivation
- Probability Measures for Optimizing Search
 - Approximation based on Uniformisation
- Directed Probabilistic Reachability Analysis
 - Case Study
 - Conclusion and Outlook

Outline

- Motivation
- Probability Measures for Optimizing Search
 - Approximation based on Uniformisation
- Directed Probabilistic Reachability Analysis
 - Case Study
 - Conclusion and Outlook

Motivation

Why Stochastic Model Checking?

- Stochastic models are widely used to model and analyze system performance and dependability.
 - communication protocols, embedded systems, etc.
- Various model checking approaches for stochastic models have been presented.
- Our point of reference: CSL Model checking
 - Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-Checking Algorithms for Continuous-Time Markov chains. IEEE Transitions on Software Engineering 29, 2003
 - Continuous Stochastic Logic (CSL) for expressing real-time probabilistic properties of Continuous Time Markov Chains (CTMCs) has been proposed.
 - Probabilitatic, timed extension of CTL.
 - Efficient approximative algorithms to model check CSL formulae have been developed (e.g., by the above authors).

Markov Chain Models

Discrete Time

- A discrete time Markov chain (**DTMC**) is a quadruple (S, s₀, P, L), where
 - S is a finite set of states, and
 - $-s_0 \in S$ is an initial state
 - P: $S \times S \to \mathbb{R}$ is a probability matrix, satisfying that for each state, the sum of the probabilities of outgoing probabilistic transitions is 1.
 - L : S \rightarrow 2^{AP} is labeling function, which assigns each state the subset of valid atomic propositions.
 - i.e., a Kripke structure augmented with probabilistic information

Markov Chain Models

Continuous Time

- A continuous time Markov chain (**CTMC**) is a quintuple (S, s₀, P, E, L), where
 - (S, s₀, P, L) is a DTMC and
 - $E: S \to \mathbb{R}_{>0}$ is a function assigning each state an exit rate,
 - e.g., $E := \{(s_0, 3), (s_1, 0), (s_2, 5)\}$
 - exit rates are exponentially distributed

Probabilities in DTMCs and CTMCs

- steady-state probabilities:
 - system is considered "in the long run", i.e., when equilibrum has been reached
- transient-state probabilities:
 - system is considered at a given time instant t

Property Specification

Timed Pobabilistic Reachability

- The probability to reach a state s violating a state proposition θ, i.e., satisfying $\varphi := \neg \vartheta$, within the time interval [0, t], does not exceed a probability $p \in [0, 1]$.
- Specification using Continuous Stochastic Logic (CSL)

$$\mathcal{P}_{\leq p}(\lozenge^{\leq t}\varphi)$$

 $\mathcal{P}_{< p}(\lozenge^{\leq t}\varphi)$ $\mathcal{P}_{< p}$: Transient probability does not exceed p. $\diamondsuit^{\leq t}$: Timed reachability within [0, t]

CSL Model Checking (according to Baier et al.)

- recursively determines sets of states satisfying CSL subformulae
- efficient and numerically stable
- based on uniformisation
- Weakness:
 - CSL model checking (like many other stochastic model checking) approaches) do not return "counterexamples"
 - problematic for system debugging

Approach

state space search on the CTMC to find offending system runs

Explicit-State Model Checking

Explicit-State model checking (ESMC)

- checks state properties by exploring the state space using graph search algorithms like DFS and BFS.
- If an error is found, an offending system run is returned, which helps in explaining why the property is violated.

What constitutes a good counterexample?

In typical non-stochastic transition systems:

- good = short

How to obtain good (short) counterexamples?

- Breadth-First Search (BFS).
- Directed Explicit-State Model Checking (DESMC), uses heuristics guided search (e.g., Greedy Best-First or A*).

Probabilistic Timed Reachability

Property Violation

- According to CSL semantics, validity of ϕ can be decided by comparing the probability bound p with cumulated reachability probability $\sum_{s' \models \varphi} \rho(s', s_{init}, t)$.
 - probability measure of the (tree-shaped) infinite cylinder set containing all paths that reach ϕ -state within t time units
 - can be computed by transient analysis where all ϕ -states are made absorbing (CSL model checking à la Baier et al.)

© Stefan Leue 2005 10

Probabilistic Timed Reachability

Search Algorithms

What do standard state space search algorithms deliver when applied to stochastic models?

Need search algorithms that optimize (maximize) probability mass along single paths.

© Stefan Leue 2005 11

Outline

- Motivation
- Probability Measures for Optimizing Search
 - Approximation based on Uniformisation
- Directed Probabilistic Reachability Analysis
 - Case Study
 - Conclusion and Outlook

Paths and Runs

◆ DTMC (S, s₀, P, L)

An infinite run is a sequence

$$s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \dots$$

with $(\forall i>0)(\mathcal{P}(s_i, s_{i+1})>0)$

A finite run is a sequence

$$s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \ldots \rightarrow s_n$$

with \forall i (0 \leq i < n): $\mathcal{P}(s_i, s_{i+1}) > 0$ and s_n is absorbing.

 An absorbing state (of a DTMC) is a state which has only self transitions as outgoing transitions.

◆ CTMC (S, s₀, P, E, L)

- An infinite path is a sequence $s_0 \xrightarrow{t_0} s_1 \xrightarrow{t_1} s_2 \xrightarrow{t_2} \dots$, where $s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \dots$ is an infinite run in the DTMC (S, s₀, P, L).
- A finite path is a sequence $s_0 \xrightarrow{t_0} s_1 \xrightarrow{t_1} s_2 \xrightarrow{t_2} \cdots \xrightarrow{t_{n-1}} s_n$, where $s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \cdots \rightarrow s_n$ is a finite run in the DTMC (S, s₀, P, L).
- Note: each run yields an infinite set of paths!

Timed Reachability Probability

• The Timed Reachability Probability $\rho(s, s', t)$ of a CTMC

probability to reach state s' at the latest at time t, if starting in state s at time 0.

$$\rho(s', s, t) := Pr\{\sigma \in Path(s) \mid \exists t' \in [0, t] : \sigma @t' = s'\}$$

- Pr is the probability mass of the above set.
- Path(s) is the set of paths starting at the state s.
- σ @t' is the state occupied by the system at the time point t', if the path σ is executed.
- computation of $\rho(s, s', t)$ can be reduced to time-dependent state probability

$$\pi(s', s, t) = \Pr{\sigma \in Path(s) \mid \sigma@t = s'}$$
 after making s' absorbing

- determines probability to reach state s' at time t when starting in s at time 0
- efficient uniformisation based techniques to compute this exist

engineering

Counterexamples for Stochastic Models

What is a Good Counterexample in Stochastic Models?

- The violation of a timed probabilistic reachability property in a CTMC caused not only by one run, but by an infinite set of runs from a tree of unbounded depth.
 - Infinite branching tree due to varying real-time stamps.
- We expect the user to be interested in a counterexample which carries a high probability mass (i.e., is most informative).
 - Helps identify the portion of the infinite set of runs that violate probability bound which is undesired.
- The length of a path is not indicative of its probability mass.
 - − → BFS or (D)ESMC with the length as a guiding cost measure will not help!
- We aim to select an offending system run whose contribution to the timed reachability probability is high or even maximal.
 - − → timed run probability

Timed Run Probability

Timed Run Probability for CTMCs

- Let $r = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow ... \rightarrow s_n$ a finite run of a CTMC.
- The timed run probability of r, γ(r, t), is the probability to execute run r within the time interval [0, t]:

$$\gamma(r,t) = \Pr\{\sigma \in Path(s_0) \mid \exists t' \in [0,t] : \sigma @t' = s_n \land \sigma \downarrow_{s_n} = r\}.$$

Execution time < *t*

- Intuitively, $\gamma(r, t)$ gives the probability that r is executed and s_n =last(r) is reached at the latest at time t.
- For finite run r, γ is given by

$$\gamma(r,t) = \int_{0}^{t} \left(p(s_1, s_0, t_1) \cdot \left(\dots \left(\int_{0}^{t-t_{n-1}} p(s_n, s_{n-1}, t_n) \cdot dt_n \right) \dots \right) \right) \cdot dt_1,$$

where $p(s', s, t) = P(s,s') \cdot (1 - e^{-E(s) \cdot t})$ is the probability to move from s to s' in the interval [0,t].

 γ (r,t,) can be computed by ρ (last(r), first(r), t) on a CTMC for which all states not reached by r are made absorbing

© Stefan Leue 2005 16

Outline

- Motivation
- Probability Measures for Optimizing Search
 - Approximation based on Uniformisation
- Directed Probabilistic Reachability Analysis
 - Case Study
 - Conclusion and Outlook

Optimizing ESMC for Stochastic Models

Idea

- Use of an optimizing state space search algorithm with the timed run probability as optimization criterion!
- In each search iteration we have to compute the timed run probability for the runs from the initial state to each newly explored state.
 - This needs to be done on-the-fly!
- However, the determination of the exact value of γ (r, t) is computationally very expensive.
 - Requires solving complicated nested integral.
 - Computationally expensive and prone to numerical instability problems.
 - This cannot be done on-the-fly!
- A powerful approximation is required!

Approximation based on the uniformised model!

Uniformisation

Uniformisation for a CTMC:

- Uniformise A into a DTMC A' for which a timed run probability γ' can easily be computed:
 - Let A=(S, P, E, L) a CTMC.
 - Choose a number Γ with $\Gamma \geq E(s)$ for all $s \in S$.
 - The transition probability matrix M for DTMC A'=(S, M, L) is defined as follows:

$$M = I + \frac{1}{\Gamma} \cdot E(s) \cdot (P - I)$$

where I is the identity matrix.

Uniformisation

Uniformisation for a CTMC:

– A' is then embedded into a Poisson process as follows:

$$Prob\{N(t) = k\} := \frac{(\Gamma \cdot t)^k}{k!} \cdot e^{-\Gamma \cdot t}, \qquad k, \ t \ge 0.$$

- Expected value is $N := \Gamma \cdot t$.
 - N corrsponds to number of hops in A' that may occur in t time units.
 - Probability of N hops in t time units is maximal

Use in State Space Search (Now on A')

- t: time bound in property
- search selects path in A' with length of at most N transitions, i.e. that carries maximal probability
 - limit search to states probably reachable within [0, t]

Uniformisation

Intuitively, what does this mean?

- For each state s, the exit rate E(s) is increased to be Γ .
- A self loop carrying the difference between E(s) and Γ is added to s.
- The model performs discretely, i.e. on each event exactly one transition is fired.

In the Example

Let $\Gamma = 5$

Approximation

CTMC Timed Run Probability Approximation

- γ (r, t) (in A) is approximated by DTMC timed run probability γ '(r, N) (in A'=(S, P', L)).
 - $-\gamma'(r, N)$: reachability property in A' along r bounded by N hops
 - traversal tree of search algorithm has always at most one run r between each pair of states, i.e., run is characterized by (first(r), last(r)) and we write $\gamma'(\text{last}(r), \text{first}(r), \text{N})$ or $\gamma'(\text{last}(r), \text{N})$.
 - π' denotes restriction of π to the traversal tree
 - $\pi'(s, k)$ is $\pi(s, s_{init}, k)$ on DTMC obtained from A' by redirecting all transitions not contained in traversal tree, with the exception of self-loops, to an absorbing state.
 - $-\gamma'(r, N)$ can easily be computed by

$$\gamma'(s, N) = M(pred(s), s) \cdot \sum_{k=0}^{N-1} \pi'(pred(s), k)$$

Approximation

Computing γ'

$$\gamma'(s,N) = M(pred(s),s) \cdot \sum_{k=0}^{N-1} \pi'(pred(s),k)$$

Let $r_1 = s_0 \rightarrow s_1$ and $r_2 = s_0 \rightarrow s_2 \rightarrow s_1$, then:

$$\gamma'(r_1,2) = \frac{1}{5} \cdot (\pi_{r_1}(s_0,0) + \pi_{r_1}(s_0,1)) = \frac{1}{5} \cdot (1 + 1 \cdot \frac{2}{5}) = \frac{7}{25}$$

$$\gamma'(r_2,2) = \frac{2}{3} \cdot (\pi_{r_2}(s_1,0) + \pi_{r_2}(s_1,1))$$

= $\frac{2}{3} \cdot (0 + \frac{2}{5} \cdot \pi_{r_2}(s_0,0)) = \frac{2}{3} \cdot (0 + \frac{2}{5} \cdot 1) = \frac{4}{15}$

Example

An Intriguing Example.

- Note: the path with optimal run time probability changes with the time bound t!
 - For t < 1.0, $\gamma_{CT}(r_1, t) > \gamma_{CT}(r_2, t)$
 - For t > 1.0, $\gamma_{CT}(r_1, t) < \gamma_{CT}(r_2, t)$

Quality of Uniformisation Approximation

Outline

- Motivation
- Probability Measures for Optimizing Search
 - Approximation based on Uniformisation
- Directed Probabilistic Reachability Analysis
 - Case Study
 - Conclusion and Outlook

Directed Probabilistic Reachability Analysis

We are now able to

- explore CTMCs (and DTMCs) using optimizing algorithms, and
- select runs (counterexamples) which are approximating the optimal objective function (timed run probability) values.

Informed, Heuristics-guided Search Algorithms

- Use knowledge about the structural properties of the state space or the goal state specification to perform heuristics guided state space exploration.
 - Greedy Best First Search (GBestFS) and
 - − Z*
- generalization of A*, allows the use of non-additive cost measures
- Such knowledge manifests itself in the heuristic evaluation function f which estimates the desirability of expanding a state.
- If is based on intuition expressed through a heuristic function h, amongst others.

engineering

© Stefan Leue 2005 27

Directed Search Algorithms

- Expansion of some state s:
 - Generate the successor s'
 - Compute $f(s') = F[\psi(s), f(s), h(s')]$
- ◆ GBestFS: f(s') = h(s')
- ♦ **Z*:** $f(s') := F[\psi(s), f(s), h(s')]$:= $F[\{\pi(s, k) | 0 \le k \le N\}, M(s, s'), h(s')]$:= $-\gamma'(s', N) \cdot h(s')$.
 - We conjecture that this cost measure delivers optimal solutions for the approximated model:

$$\gamma'(r,N) \leq \gamma'(r_1,N) \cdot \gamma'(r_2,N)$$

Heuristic Functions

Determining and Computing Heuristic Functions

- Admissibility / informativeness of heuristics
 - admissibility: heuristic function h is optimistic and overestimates the maximal timed run probability until a state satisfying ϕ is reached outgoing from s.
 - desirable, but optimal solution is not the penultimate goal
 - informedness: heuristics discriminates well between desirable and undesirable states to be explored
 - desirable, since it reduces search effort
- If ϕ is an atomic state proposition, the construction of h depends on the domain and ϕ itself.
 - For complicated formulae involving Boolean connectives we suggest computing heuristics as illustrated in the following table:

φ	h_{arphi}	$ar{h}_{arphi}$	
$\neg \varphi_1$	$\max\{h_{\varphi_1},h_{\varphi_2}\}$	h_{φ_1}	e.g., for $\mathcal{P}_{\leq p}(\lozenge^{\leq t}(\varphi_1 \wedge \neg \varphi_2))$
$\varphi_1 \lor \varphi_2 \\ \varphi_1 \land \varphi_2$		$\max\{\bar{h}_{\varphi_1}, \bar{h}_{\varphi_2}\}$	la l

© Stefan Leue 2005

Outline

- Motivation
- Probability Measures for Optimizing Search
 - Approximation based on Uniformisation
- Directed Probabilistic Reachability Analysis
 - Case Study
 - Conclusion and Outlook

Case Study

SCSI-2 Protocol

- Storage system consisting of up to 8 devices, one disk controller and up to 7 hard disks.
 - Assumption: one main disk, the remainder are backup disks.
 - Interested in probability to overload one of the disks.
- These devices are connected by a bus implementing the small computer system interface-2 (SCSI-2) standard.
- Each device is assigned a unique SCSI number between 0 and 7.
- The controller can send a command (CMD) to the disk d. After processing this command, the disk sends a reconnect message (REC) to the controller.
- CMD and REC messages of every disk are stored in two eight-place FIFO queues.
- CMD and REC messages circulate on the SCSI bus, which is shared by all devices.
- This system is modeled in LOTOS and transformed into an interactive Markov chain (IMC) by the CADP toolbox.

© Stefan Leue 2005 31

Property Specification

Properties

- to model disk load
 - φ_d : the command queue of disk d is full
 - ϑ_d : the command queue of disk d is empty
- properties in CSL
 - MDOL: $\phi := \mathcal{P}_{\leq p}(\diamondsuit^{\leq t} \varphi_0 \wedge \vartheta_1 \wedge \vartheta_2)$
 - BDOL: $\theta := \mathcal{P}_{<p}(\diamondsuit \leq t \ \vartheta_0 \land (\varphi_0 \land \vartheta_1) \lor (\vartheta_0 \land \varphi_1))$

Heuristics

- cq(s,i): for each disk i, number of commands contained in its command queue in state s
- Markovian transitions
 - λ_d : delay required to issue new command to disk d
 - μ_d: servicing time of disk d

Uniformisation

- maximum exit rate: $max\{E(s) \mid s \in S\} = \sum_{d \in D} (\lambda_d + \mu_d) =: E_{max}$
 - replace any rate in model by rate/E_{max}

Heuristic Estimates

Optimisitc Heuristc Estimates

heuristic functions (easy to compute)

$$egin{align} h_{arphi_d}(s) &:= & (rac{\lambda_d}{E_{max}} \cdot \sum_{k=0}^{N-1} (1-p_{out}(s))^k))^{8-cq(s,d)} \ h_{artheta_d}(s) &:= & (rac{\mu_d}{E_{max}} \cdot \sum_{k=0}^{N-1} (1-p_{out}(s))^k))^{cq(s,d)} \ \end{aligned}$$

where pout(s) is the branching probability of leaving s

conjectures establishing optimality in the approximated model

$$h_{\varphi_d}(s) \ge h_{\varphi_d}^*(s) := \max\{\gamma'(s, s', N) \mid cq(s', d) = 8\}$$

 $h_{\vartheta_d}(s) \ge h_{\vartheta_d}^*(s) := \max\{\gamma'(s, s', N) \mid cq(s', d) = 0\}$

Experimental Results: Probabilities

	Time bound		1	2	3	4	5	6	7	8	9	10
MDOL	Model		0.235	0.312	0.327	0.329	0.329	0.329	0.330	0.330	0.330	0.330
	DFS		_	_	_	-	_	_	0.000	_	_	0.000
	BFS		_	0.161	0.161	0.161	0.161	0.161	0.161	0.161	0.161	0.161
	Dijkstra	estimated	<u> </u>	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049
		precise	-	0.161	0.161	0.161	0.161	0.161	0.161	0.161	0.161	0.161
	GBestFS	estimated	_	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
		precise	_	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
	Z*	estimated	-	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049
		precise	_	0.161	0.161	0.161	0.161	0.161	0.161	0.161	0.161	0.161

Model:

 total reachability property, as determined by numerical transient probability analyzer in CADP

DFS:

- either finds no counterexample within depth bound, or
- finds counterexample with very low probability mass

BFS:

- probability mass of step-length optimal counterexample
- happens to be the probability-mass optimal counterexample

engineering

Experimental Results: Probabilities

	Time bound		1	2	3	4	5	6	7	8	9	10
MDOL	Model		0.235	0.312	0.327	0.329	0.329	0.329	0.330	0.330	0.330	0.330
	DFS		_	_	_	_	_	-	0.000	_	_	0.000
	BFS		_	0.161	0.161	0.161	0.161	0.161	0.161	0.161	0.161	0.161
	Dijkstra	estimated	_	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049
		precise	-	0.161	0.161	0.161	0.161	0.161	0.161	0.161	0.161	0.161
	GBestFS	estimated	<u>-</u>	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
		precise	_	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
	Z*	estimated	_	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049
		precise	_	0.161	0.161	0.161	0.161	0.161	0.161	0.161	0.161	0.161

- Dijkstra (uses $-\gamma'(s,N)$ as weights):
 - delivers optimal estimated model
 - high precise probability $\gamma(r, t)$ in original model
- GBestFS (informed, uses approximation based heuristics)
 - finds a low probability counterexample both in approximated model (estimate) and in the original model (precise)
- Z* (informed, uses approximation based heuristics)
 - finds same counterexamples as Dijkstra, which supports our claim of optimality in the approximated model.

© Stefan Leue 2005 35

Experimental Results: MDOL, computational effort

- informed algorithms (GBestFS, Z*) better performance than uninformed algorithms (DFS, BFS, Dijkstra)
- sometimes, GBestFS shows a slightly a better performance than Z*

Experimental Results: Qualitative Analysis

- DFS finds goal state on a very intricate run that carry very little probability mass
- Z* finds a counterexample, that quite intuitively carries high probability
 - right from the start, the disk continually receives commands without getting a chance to service them
 - LAMBDA !0: Markovian delay (relatively high compared to other Markovian delays in the system)
 - ARB: access to data bus
 - CMD !0: command to disk 0.

Outline

- Motivation
- Probability Measures for Optimizing Search
 - Approximation based on Uniformisation
- Directed Probabilistic Reachability Analysis
 - Case Study
 - Conclusion and Outlook

Conclusion

Counterexamples

- defined counterexamples for CTMCs, including their probability mass: timed run probabilities
- approximate the computationally expensive computation of timed run probabilities through uniformisation

Directed CTMC Exploration

- use approximative timed run probability in determining generating path costs
- combine with domain specific information to compute admissible heuristic estimates (admissible in the approximated model)

Experimental Evaluation (SCSI-2)

- using approximated timed run probabilities allows Dijkstra and heuristic search algorithms to find meaningful counterexamples
- heuristics guided search is computationally superior to uninformed search

Outlook

Threats to Valitidy

- more experimental data
 - convergence to PRISM tool environment, more models available
 - use randomly generated models

Underapproximation of Probabilistic Timed Reachability

- find tree of offending system runs so that combined probability mass exceeds probability bound
- potentially computationally much more efficient that precise solution of problem

Application to Other Stochastic Models

- Continuous Time Markov Decision Processes
 - contain non-determinism

Reference

H. Aljazzar, H. Hermanns and S. Leue. Counterexamples in Timed Probabilistic Reachability. To appear in: Proceedings of FORMATS'05, Lecture Notes in Computer Science, Springer Verlag, 2005.

Overflow

DTMC

$$\pi(s',s,k) = P^k(s,s')$$