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Motivation
♦ Why Stochastic Model Checking?
8Stochastic models are widely used to model and analyze system 

performance and dependability. 
– communication protocols, embedded systems, etc.

8Various model checking approaches for stochastic models have been 
presented. 

8Our point of reference: CSL Model checking  
– Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-

Checking Algorithms for Continuous-Time Markov chains. IEEE 
Transitions on Software Engineering 29, 2003
iContinuous Stochastic Logic (CSL) for expressing real-time 

probabilistic properties of Continuous Time Markov Chains 
(CTMCs) has been proposed. 

* Probabilitstic, timed extension of CTL.
iEfficient approximative algorithms to model check CSL 

formulae have been developed (e.g., by the above authors).



6© Stefan Leue 2005 so
ftw

ar
e

engineering

Markov Chain Models 
♦ Discrete Time
8A discrete time Markov chain (DTMC) is a quadruple (S, s0, P, L), 

where 
– S is a finite set of states, and
– s0 ∈ S is an initial state
– P : S × S → R is a probability matrix, 

satisfying that for each state, the sum of the probabilities of 
outgoing probabilistic transitions is 1.

– L : S → 2AP is labeling function, which assigns each state the 
subset of valid atomic propositions.

– i.e., a Kripke structure augmented with probabilistic information
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Markov Chain Models

3

5

0

♦ Continuous Time
8A continuous time Markov chain (CTMC) is a 

quintuple (S, s0, P, E, L), where
– (S, s0, P, L) is a DTMC and
– E : S → R>0 is a function assigning each state 

an exit rate, 

ie.g., E := {(s0, 3), (s1, 0), (s2, 5)}
– exit rates are exponentially distributed

♦ Probabilities in DTMCs and CTMCs
8steady-state probabilities: 

– system is considered "in the long run", i.e., when equilibrum has 
been reached

8 transient-state probabilities: 
– system is considered at a given time instant t
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Property Specification
♦ Timed Pobabilistic Reachability
8The probability to reach a state s violating a state proposition ϑ, i.e., 

satisfying ϕ := ¬ ϑ, within the time interval [0, t], does not exceed a 
probability p ∈ [0, 1].

8Specification using Continuous Stochastic Logic (CSL)

♦ CSL Model Checking (according to Baier et al.)
8 recursively determines sets of states satisfying CSL subformulae
8efficient and numerically stable
8based on uniformisation
8Weakness: 

– CSL model checking (like many other stochastic model checking 
approaches) do not return "counterexamples"
iproblematic for system debugging

♦ Approach
8state space search on the CTMC to find offending system runs

P<p :   Transient probability does not exceed p.
♦· t :  Timed reachability within [0, t]
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Explicit-State Model Checking
♦ Explicit-State model checking (ESMC) 
8checks state properties by exploring the state space using graph

search algorithms like DFS and BFS. 
8 If an error is found, an offending system run is returned, which helps 

in explaining why the property is violated. 

♦ What constitutes a good counterexample?
8 In typical non-stochastic transition systems:

– good = short

♦ How to obtain good (short) 
counterexamples?
8Breadth-First Search (BFS).
8Directed Explicit-State Model 

Checking (DESMC), uses heuristics 
guided search (e.g., Greedy Best-
First or A*).
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Probabilistic Timed Reachability

♦ Property Violation
8According to CSL semantics, validity of φ can be decided by 

comparing the probability bound p with cumulated reachability
probability 

– probability measure of the (tree-shaped) infinite cylinder set 
containing all paths that reach ϕ-state within t time units

– can be computed by transient analysis where all ϕ-states are 
made absorbing (CSL model checking à la Baier et al.)
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Probabilistic Timed Reachability
♦ Search Algorithms
8What do standard state space search algorithms deliver when applied 

to stochastic models?

8Need search algorithms that optimize (maximize) probability mass
along single paths.

Depth-First Search (DFS)

Path-length optimizing search
(BFS, Best-First, A*)

we want this!
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Paths and Runs
♦ DTMC (S, s0, P, L)
8An infinite run is a sequence 

with (∀i>0)(P(si, si+1) > 0)
8A finite run is a sequence 

with ∀ i (0 · i < n): P(si, si+1) > 0 and sn is absorbing. 
– An absorbing state (of a DTMC) is a state which has only self 

transitions as outgoing transitions. 

♦ CTMC (S, s0, P, E, L)
8An infinite path is a sequence

where                                 is an infinite run in the DTMC (S, s0, P, L).
8A finite path is a sequence 

where                                        is a finite run in the DTMC  (S, s0, P, L).
8Note: each run yields an infinite set of paths!
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Timed Reachability Probability 
♦ The Timed Reachability Probability ρ(s, s‘, t) of a CTMC  
8probability to reach state s’ at the latest at time t, if starting in state s 

at time 0.

– Pr is the probability mass of the above set.
– Path(s) is the set of paths starting at the state s.

– σ@t‘ is the state occupied  by the system at the time point t’, if the 
path σ is executed.

8computation of ρ(s, s‘, t) can be reduced to time-dependent state 
probability

π(s', s, t) = Pr{σ ∈ Path(s) | σ@t = s'}

after making s' absorbing
– determines probability to reach state s' at time t when starting in s 

at time 0
– efficient uniformisation based techniques to compute this exist
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Counterexamples for Stochastic Models
♦ What is a Good Counterexample in Stochastic Models?
8The violation of a timed probabilistic reachability property in a CTMC 

caused not only by one run, but by an infinite set of runs from a tree 
of unbounded depth.

– Infinite branching tree due to varying real-time stamps. 
8We expect the user to be interested in a counterexample which 

carries a high probability mass (i.e., is most informative).
– Helps identify the portion of the infinite set of runs that violate 

probability bound which is undesired.
8The length of a path is not indicative of its probability mass.

– BFS or (D)ESMC with the length as a guiding cost measure will 
not help!

8We aim to select an offending system run whose contribution to the 
timed reachability probability is high or even maximal. 

– timed run probability
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Timed Run Probability
♦ Timed Run Probability for CTMCs
8Let r =  s0 → s1 → s2 → … → sn a finite run of a CTMC.
8The timed run probability of r, γ(r, t), is the probability to execute run r 

within the time interval [0, t]:

8 Intuitively, γ(r, t) gives the probability that r is executed and sn=last(r) 
is reached at the latest at time t.

8For finite run r, γ is given by

where p(s', s, t) = P(s,s') · (1 - e-E(s) · t ) is the probability to move from 
s to s' in the interval [0,t]. 

8 γ(r,t,) can be computed by ρ(last(r), first(r), t) on a CTMC for which all 
states not reached by r are made absorbing

s0 Sn

Execution time · t

r =
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Optimizing ESMC for Stochastic Models
♦ Idea
8Use of an optimizing state space search algorithm with the timed run 

probability as optimization criterion!
8 In each search iteration we have to compute the timed run probability 

for the runs from the initial state to each newly explored state. 
– This needs to be done on-the-fly!

8However, the determination of the exact value of γ (r, t) is 
computationally very expensive. 

– Requires solving complicated nested integral.
iComputationally expensive and prone to numerical instability 

problems.
– This cannot be done on-the-fly!

8A powerful approximation is required!

Approximation based on the uniformised model!
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Uniformisation
♦ Uniformisation for a CTMC:
8Uniformise A into a DTMC A' for which a timed run probability γ' can 

easily be computed:
– Let A=(S, P, E, L) a CTMC.
– Choose a number Γ with Γ ≥ E(s) for all s ∈ S. 

– The transition probability matrix M for DTMC A'=(S, M, L) is 
defined as follows: 

where I is the identity matrix.
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Uniformisation
♦ Uniformisation for a CTMC:

– A’ is then embedded into a Poisson process as follows:

– Expected value is N := Γ · t.
iN corrsponds to number of hops in A' that may occur in t time 

units.
iProbability of N hops in t time units is maximal

♦ Use in State Space Search (Now on A')
8 t: time bound in property
8search selects path in A' with length of at most N transitions, i.e. that 

carries maximal probability
– limit search to states probably reachable within [0, t]
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Uniformisation
♦ Intuitively, what does this mean? 
8For each state s, the exit rate E(s) is 

increased to be Γ. 
8A self loop carrying the difference 

between E(s) and Γ is added to s. 
8The model performs discretely, i.e. on 

each event exactly one transition is fired.

♦ In the Example
8Let Γ = 5 

s

…

E(s)Γ – E(s)

3

5

0

2/5 1/5

2/5
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Approximation
♦ CTMC Timed Run Probability Approximation 
8 γ(r, t) (in A) is approximated by DTMC timed run probability γ'(r, N) (in 

A’=(S, P', L)). 

– γ'(r, N): reachability property in A' along r bounded by N hops
– traversal tree of search algorithm has always at most one run r 

between each pair of states, i.e., run is characterized by (first(r), 
last(r)) and we write γ'(last(r), first(r), N) or γ'(last(r), N).

– π' denotes restriction of π to the traversal tree
i π'(s, k) is π(s, sinit, k) on DTMC obtained from A' by 

redirecting all transitions not contained in traversal tree, with 
the exception of self-loops, to an absorbing state.

– γ'(r, N) can easily be computed by
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Approximation
♦ Computing γ'

3

5

0

2/5 1/5

2/5
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Example
♦ An Intriguing Example.

8Note: the path with optimal run time probability changes with the time 
bound t! 

– For t < 1.0, γCT(r1, t) > γCT (r2, t)
– For t > 1.0, γCT (r1, t) < γCT (r2, t)  

r1

r2

2

2

10 10
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Quality of Uniformisation Approximation
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Directed Probabilistic Reachability Analysis
♦ We are now able to
8explore CTMCs (and DTMCs) using optimizing algorithms, and 
8select runs (counterexamples) which are approximating the optimal 

objective function (timed run probability) values. 

♦ Informed, Heuristics-guided Search Algorithms
8Use knowledge about the structural properties of the state space or 

the goal state specification to perform heuristics guided state space 
exploration.

– Greedy Best First Search (GBestFS) and 
– Z*
igeneralization of A*, allows the use of non-additive cost 

measures
8Such knowledge manifests itself in the heuristic evaluation function f 

which estimates the desirability of expanding a state.
8 f is based on intuition expressed through a heuristic function h, 

amongst others.
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Directed Search Algorithms
♦ Expansion of some state s: 
8Generate the successor s‘
8Compute f(s’) = F[ ψ(s), f(s), h(s‘)]

♦ GBestFS: f(s‘) = h(s‘)

♦ Z*:

8We conjecture that this cost measure delivers optimal solutions for the 
approximated model: 

X

h

γ'
s

s‘

s‘s s‘‘
r1 r2

r
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Heuristic Functions
♦ Determining and Computing Heuristic Functions
8Admissibility / informativeness of heuristics

– admissibility: heuristic function h is optimistic and overestimates 
the maximal timed run probability until a state satisfying ϕ is 
reached outgoing from s.
idesirable, but optimal solution is not the penultimate goal

– informedness: heuristics discriminates well between desirable and 
undesirable states to be explored
idesirable, since it reduces search effort

8 If ϕ is an atomic state proposition, the construction of h depends on 
the domain and ϕ itself. 

– For complicated formulae involving Boolean connectives we 
suggest computing heuristics as illustrated in the following table: 
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Case Study
♦ SCSI-2 Protocol
8Storage system consisting of up to 8 devices, one disk controller and 

up to 7 hard disks. 
– Assumption: one main disk, the remainder are backup disks.
– Interested in probability to overload one of the disks.

8These devices are connected by a bus implementing the small 
computer system interface-2 (SCSI-2) standard. 

8Each device is assigned a unique SCSI number between 0 and 7. 
8The controller can send a command (CMD) to the disk d. After 

processing this command, the disk sends a reconnect message 
(REC) to the controller. 

8CMD and REC messages of every disk are stored in two eight-place 
FIFO queues. 

8CMD and REC messages circulate on the SCSI bus, which is shared 
by all devices. 

8This system is modeled in LOTOS and transformed into an interactive  
Markov chain (IMC) by the CADP toolbox. 
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Property Specification
♦ Properties
8 to model disk load

– ϕd: the command queue of disk d is full
– ϑd: the command queue of disk d is empty

8properties in CSL
– MDOL: φ := P<p(♦· t ϕ0 ∧ ϑ1 ∧ ϑ2)
– BDOL: θ := P<p(♦· t ϑ0 ∧ (ϕ 0 ∧ ϑ1) ∨ (ϑ0 ∧ ϕ1))

♦ Heuristics
8cq(s,i): for each disk i, number of commands contained in its 

command queue in state s
8Markovian transitions

– λd: delay required to issue new command to disk d
– µd: servicing time of disk d

♦ Uniformisation
8maximum exit rate:

– replace any rate in model by rate/Emax
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Heuristic Estimates
♦ Optimisitc Heuristc Estimates
8heuristic functions (easy to compute)

where pout(s) is the branching probability of leaving s

8conjectures establishing optimality in the approximated model
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Case-Study: SCSI-2 Protocol
♦ Experimental Results: Probabilities 

8Model: 
– total reachability property, as determined by numerical transient 

probability analyzer in CADP
8DFS: 

– either finds no counterexample within depth bound, or 
– finds counterexample with very low probability mass

8BFS: 
– probability mass of step-length optimal counterexample 
– happens to be the probability-mass optimal counterexample
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Case-Study: SCSI-2 Protocol
♦ Experimental Results: Probabilities 

8Dijkstra (uses -γ'(s,N) as weights):
– delivers optimal estimated model

– high precise probability γ(r, t) in original model
8GBestFS (informed, uses approximation based heuristics)

– finds a low probability counterexample both in approximated 
model (estimate) and in the original model (precise) 

8 Z* (informed, uses approximation based heuristics)
– finds same counterexamples as Dijkstra, which supports our claim 

of optimality in the approximated model.
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Case-Study: SCSI-2 Protocol
♦ Experimental Results: MDOL, computational effort

8 informed algorithms (GBestFS, Z*) better performance than 
uninformed algorithms (DFS, BFS, Dijkstra)

8sometimes, GBestFS shows a slightly a better performance than Z*

CPU runtime explored states
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Case-Study: SCSI-2 Protocol
♦ Experimental Results: Qualitative Analysis
8DFS finds goal state on a very intricate run that carry very little 

probability mass
8Z* finds a counterexample, that quite intuitively carries high 

probability
– right from the start, the disk continually receives commands 

without getting a chance to service them
iLAMBDA !0: Markovian delay (relatively high compared to 

other Markovian delays in the system)
iARB: access to data bus
iCMD !0: command to disk 0.
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Conclusion
♦ Counterexamples
8defined counterexamples for CTMCs, including their probability mass: 

timed run probabilities
8approximate the computationally expensive computation of timed run 

probabilities through uniformisation

♦ Directed CTMC Exploration
8use approximative timed run probability in determining generating 

path costs
8combine with domain specific information to compute admissible 

heuristic estimates (admissible in the approximated model)

♦ Experimental Evaluation (SCSI-2)
8using approximated timed run probabilities allows Dijkstra and 

heuristic search algorithms to find meaningful counterexamples
8heuristics guided search is computationally superior to uninformed 

search



40© Stefan Leue 2005 so
ftw

ar
e

engineering

Outlook
♦ Threats to Valitidy
8more experimental data

– convergence to PRISM tool environment, more models available
– use randomly generated models

♦ Underapproximation of Probabilistic Timed Reachability
8 find tree of offending system runs so that combined probability mass 

exceeds probability bound
8potentially computationally much more efficient that precise solution 

of problem

♦ Application to Other Stochastic Models
8Continuous Time Markov Decision Processes

– contain non-determinism
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Overflow
♦ DTMC
8 π(s',s,k) = Pk(s,s')
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