Counterexamples for Timed Probabilistic Reachability

Husain Aljazzar

Software Engineering
University of Constance

Joint work with

- □ Holger Hermanns, Saarland University
- □ Stefan Leue, University of Constance

Software Engineering

Overview

- □ Introduction
- (Directed) Explicit-State Model Checking(D)ESMC for Timed Probabilistic Reachability
- □ Probabilistic Quality Measure for (D)ESMC
- □ Case Study and Experimental Results
- □ Conclusion & Future Work

Overview Software Engineering

- □ Introduction
- □ (Directed) Explicit-State Model Checking(D)ESMC for Timed Probabilistic Reachability
- □ Probabilistic Quality Measure for (D)ESMC
- Case Study and Experimental Results
- □ Conclusion & Future Work

Stochastic Models

- □ Stochastic models, e.g. *DTMCs* and *CTMCs*: modeling and analysis of system performance and dependability.
 - □ communication protocols,
 - □ embedded systems,
 - □ etc...
- \square A DTMC is a quadruple (S, s_0 , P, L), where
 - S is a finite set of states, and
 - $s_0 \in S$ is an initial state
 - $P: S \times S \rightarrow \mathbb{R}$ is the transition probability matrix,
 - $L: S \to 2^{AP}$ is labeling function.

Stochastic Models

- \Box A CTMC is a quintuple (S, s_0 , P, L, E), where
 - \bullet (S, s_0 , P, L) is a DTMC
 - E: $S \to \mathbb{R}$ is a function assigning each state an exit rate
 - Exit times are exponentially distributed

E.g. $E := \{(s_0, 3), (s_1, 0), (s_2, 5)\}$

Runs and Paths

 \square In a DTMC, we call a *finite/infinite* sequence of states *finite/infinite* RUN

$$s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \dots \rightarrow s_n,$$

 $s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \dots,$

□ In a CTMC, a *finite/infinite PATH* is a timed variant of a run in the underlying DTMC.

$$s_0 \xrightarrow{t_0} s_1 \xrightarrow{t_1} s_2 \xrightarrow{t_2} \cdots \xrightarrow{t_{n-1}} s_n,$$
 $s_0 \xrightarrow{t_0} s_1 \xrightarrow{t_1} s_2 \xrightarrow{t_2} \cdots,$

☐ Infinite branching tree due to varying transition time durations of transitions.

Analysis of Stochastic Models

- □ Various model checking approaches for stochastic models have been presented.
- □ Our point of reference: CSL model checking

Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P. "Model-Checking Algorithms for Continuous-Time Markov chains" IEEE Transitions on Software Engineering 29, 2003

- Continuous Stochastic Logic (CSL):
- CSL model checking algorithms: efficient, approximate, numerical
- □ Common weakness: Inability to give detailed debugging information (Counterexamples).
 - Problematic for debugging
- □ **Approach:** Use explicit state space algorithms to select offending system runs (counterexamples).

Timed Probabilistic Reachability Analysis

- □ Timed Reachability Property:
 - The probability to reach a state \mathbf{s} violating a state proposition $\mathbf{9}$, i.e., satisfying $\varphi := \neg \theta$, within a given time period \mathbf{t} does not exceed a probability bound \mathbf{p} .
 - Specification using Continuous Stochastic Logic (CSL)

$$\phi := \mathcal{P}_{< p}(\lozenge^{\leq t}\varphi)$$

 $\mathcal{P}_{< p}$: Transient probability does not exceed p.

 $\diamondsuit^{\leq t}$: Timed reachability within [0, t]

Overview

- □ Introduction
- (Directed) Explicit-State Model Checking(D)ESMC for Timed Probabilistic Reachability
- □ Probabilistic Quality Measure for (D)ESMC
- □ Case Study and Experimental Results
- □ Conclusion & Future Work

What is a Counterexample? (of Timed Probabilistic Reachability)

Software Engineering

- ☐ In non-stochastic models: a counterexample is an offending run.
- **□** In stochastic models:
 - DTMC: All offending runs
 - **CTMC:** The infinite cylinder set containing all paths that reach an error state within the time period *t*.
 - ☐ A single path of the cylinder set?
 - □ Runs in the underlying DTMC
 - A counterexample is an offending run in the (underlying) DTMC.

$$\phi := \mathcal{P}_{\leq p}(\lozenge^{\leq t}\varphi)$$

(Directed) Explicit-State Model Checking (D)ESMC

□ A mass to measure the quality of runs is required.

Overview

- □ Introduction
- □ (Directed) Explicit-State Model Checking(D)ESMC for Timed Probabilistic Reachability
- □ Probabilistic Quality Measure for (D)ESMC
- Case Study and Experimental Results
- □ Conclusion & Future Work

Timed Run Probability

- \square Let $r = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow ... \rightarrow s_n$ be a run.
- \Box The *timed run probability* of r in the time period t.

$$r = s_0 s_n$$

□ Computation:

Execution time $\leq t$

In CT-case:

$$\gamma(r,t) = \int_0^t \left(p(s_1,s_0,t_1) \cdot \left(\dots \left(\int_0^{t-t_{n-1}} p(s_n,s_{n-1},t_n) \cdot dt_n \right) \dots \right) \right) \cdot dt_1,$$

In DT-case:

$$\gamma'(r,t) = P(s_{n-1},s_n) \cdot \sum_{i=0}^{t-1} \pi(s_{n-1},i)$$

Uniformization

- Using the uniformization we turn a CTMC A into a DTMC A for which we can efficiently compute the *timed run* probability γ' .
- \Box A'is embedded into a Poisson process which describes the probability that a particular discrete number of events k occurs within a real time period t.

Approximation for the Timed Run Probability in CTMC

- We denote the expected value of the Poisson process after time period t as N.
- \square We assume that the derived DTMC A makes N hops within the time period t.
- $\neg \gamma(r, t)$ (in A) is approximated by $\gamma'(r, N)$ (in A'), which is much easier to compute.
- Our search algorithms use $\gamma'(r, N)$ as a quality measure for runs of the CTMC (optimizing criterion).

Intriguing Example

Quality of Uniformization Approximation

Software Engineering

Note: the run with optimal timed run probability changes with the time bound *t*!

- Time bound smaller than $t \rightarrow r_1$ is optimal
- Time bound larger than *t* $\rightarrow r_2$ is optimal

ESMC and DESMC for Stochastic Models

- □ Now we are able to
 - explore CTMCs (and DTMCs) using optimizing algorithms, and
 - select counterexamples which are approximating the optimal *timed run probability* values.
- □ Search Algorithms
 - Dijkstra (undirected, ESMC)
 - Directed search algorithms (**DESMC**)
 - □ Z* and Greedy Best First Search (GBestFS)
 - □ Directed search algorithms use knowledge about
 - the state space or/and
 - the specification of the goal state
 - \Box A heuristic function h is used in the state evaluation.
 - □ Advantages of DESMC: Improving the performance
 - Memory consumption
 - Runtime

Overview

- □ Introduction
- □ (Directed) Explicit-State Model Checking(D)ESMC for Timed Probabilistic Reachability
- □ Probabilistic Quality Measure for (D)ESMC
- □ Case Study and Experimental Results
- □ Conclusion & Future Work

Software Engineering

Case-Study: SCSI-2-Protocol

- □ In our experiments:
 - One Controller
 - One main disk (frequently used)
 - Two backup disks (rarely used)

CMD ARB REC DISK DISK DISK

- □ LOTOS model
 - → Interactive Markov chain (IMC)
 - \rightarrow CTMC

SCSI-2-Protocol: A Timed Reachability Property

- □ <u>Main disk overload</u> (MDOL): The main disk is overloaded while the backup disks are not accessed.
- □ **Timed Reachability Property:** The probability to reach a MDOL state within the time period *t* does not exceed 30%.

$$\mathcal{P}_{<0.3}(\lozenge^{\leq t} MDOL)$$

☐ A heuristic function based on the status of the disk queues.

SCSI-2-Protocol: Counterexample

□ The counterexample delivered by Z*

- □ For each time bound from 1 to 10:
 - Probability to violate the property
 - Timed run probability for the counterexamples delivered by the search algorithms.

SCSI-Protocol: Experimental Results

- Memory consumption
 - The behavior of DFS and BFS is unacceptable.
 - Dijkstra is OK but not excellent
 - Z* and GBestFS bring significant improvement
 - GBestFS has the best behavior.
- ☐ Similar results for runtime

Overview

- □ Introduction
- □ (Directed) Explicit-State Model Checking(D)ESMC for Timed Probabilistic Reachability
- □ Probabilistic Quality Measure for (D)ESMC
- Case Study and Experimental Results
- □ Conclusion & Future Work

Conclusion

- □ Counterexamples
 - defined counterexamples for CTMCs, including their probability mass: timed run probabilities
 - approximate the computationally expensive timed run probabilities through uniformisation
- □ Directed CTMC Exploration
 - use approximative timed run probability in determining generating path costs
 - combine with domain specific information to compute admissible heuristic estimates (admissible in the approximated model)
- □ Experimental Evaluation (SCSI-2)
 - using approximated timed run probabilities allows Dijkstra and heuristic search algorithms to find meaningful counterexamples
 - heuristics guided search is computationally superior to uninformed search

Future Work

- □ Threats to Valitidy
 - more experimental data
 - □ convergence to PRISM tool environment, more models available
 - □ use randomly generated models
- □ Underapproximation of Timed Probabilistic Reachability
 - find tree of offending system runs so that combined probability mass exceeds probability bound
 - potentially computationally much more efficient than precise solution of problem
- □ Application to Other Stochastic Models
 - Continuous Time Markov Decision Processes
 - □ contain non-determinism

Thanks for your attention!